期刊文献+

基于支持向量机分类的图像识别研究 被引量:2

Image Recognition Research Based on Support Vector Machine Classification
下载PDF
导出
摘要 提出了利用支持向量机(SVM)分类的方法对采集图像进行识别。采用计算机图像处理技术针对棉花苗期杂草图像进行分割,提取棉花与杂草的形状特征参数;选取最有效的特征数据组合输入SVM进行分类学习训练,实现杂草的有效识别。结果表明,使用该方法获得的图像识别效率较高,在同等条件下,速度优于人工神经网络。 It was put forward that by using support vector machine(SVM)classification method to identify the image.Computer image processing technology was adopted to segment images of seedling cotton and weeds and extract shape parameters of cotton and weeds.The most effective combination of characteristics data were selected to import SVM to carry classification learning and training,and the weeds were identified effectively.Experimental results showed that the proposed method used to identify weeds was more efficient,and the rate was better than artificial neural network in the same conditions.
作者 谈蓉蓉
出处 《安徽农业科学》 CAS 北大核心 2010年第26期14756-14757,共2页 Journal of Anhui Agricultural Sciences
关键词 颜色特征 形状特征 RTS不变性 SVM 图像识别 Color characteristic; Shape characteristic; RTS invariance; SVM; Image recognition;
  • 相关文献

参考文献3

二级参考文献20

  • 1[1]BURGES C J C.A totorial on support vector machines for pattern recognition[J].Data Mining and Knowledge Discovery,1998,2(2):121-169. 被引量:1
  • 2边肇祺 张学工.模式识别[M].北京:清华大学出版社,2002.296-304. 被引量:27
  • 3Julian W Gardner, Philip N Bartlet. Electronic nose:principles and applications[M]. New York: Oxford Uni-versity Press, 1999.4-10. 被引量:1
  • 4Mielle P, Marquis F. One-sensor electronic olfactormeter for rapid sorting of fresh fruit juices [J]. Sensor and Actuators B, 2001,76 (4) : 470- 476. 被引量:1
  • 5Solis J L, Kish L B, Vajtai R, et al. Identifying natural and artrificial odours through noise analysis with a sampling-and-hold electronic nose[J]. Sensors and Actuators B, 2001,77(3) :312-315. 被引量:1
  • 6Toru M, Kengo S, Tadashi T, et al. Odor identification using a SnO2-based sensor array[J]. Sensors and Actuators B,2001,80(1) :51-58. 被引量:1
  • 7Manuela O, Gabriela V, Gustavo P R, et al. A practical approach for fish freshness determinations using a portable electronic nose[J]. Sensors and Actuators B,2001,80(2) : 149-154. 被引量:1
  • 8Hans-Dieter W. Discrimination of chocolates and packaging materials by an electronic nose [J]. Eur Food Res Technol, 2001,212(5) : 529- 533. 被引量:1
  • 9Penza M, Cassano G. Chemometric characterization of Italian wines by thin-film multi-sensors array and artificial neural networks[J]. Food Chemistry, 2004,86 (3) : 283-296. 被引量:1
  • 10Brudzewskia K, Osowskib S, Markiewiczb T. Classification of milk by means of an electronic nose and SVM neural network[J]. Sensors and Actuators B, 2004, 98(3) :291-298. 被引量:1

共引文献45

同被引文献32

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部