期刊文献+

多元水文时间序列相似性挖掘的研究与应用 被引量:1

The research and application of multivariate time series similarity data mining
下载PDF
导出
摘要 利用数据挖掘技术从长期观测的数据中发现蕴藏的规律是当前研究的热点之一。相似性挖掘是时间序列挖掘的基础,文章提出了一种新的基于改进的BORDA计数的多元时间序列相似性查询方法。首先利用PCA对多元时间序列进行降元并获取每元主成分的方差贡献率作为权值,然后分别计算单序列的相似性,利用BORDA计数法分别积分,以BORDA得分乘以权值综合得到最终得分来衡量相似性。文章以宜丰洪水时间序列相似性研究为例,验证了提出方法的可行性和有效性。 How to discover the hidden knowledge among data collected by various sensors during the last years has caused more and more attention.Similarity mining is the basic of time series data mining.This paper deals with similarity mining from hydrological time series and concentrates itself on the similarity analysis of multivariate time series(MTS).A novel similarity measure has been put forward,which is based on a improved BORDA count in multiple classifier system.Firstly,dimension reduction is adaptively conducted according to the target data complexity in PCA and the contribution rate of the variance,then the similarity of single time series is computed and lastly,the overall similarity of the MTS is obtained by synthesize each of the single similarity based on the improved BORDA count.Experiments on the similarity analysis of historical flood data from Yifeng basin have shown the feasibility and effectiveness of the proposed method.
作者 王咏梅
出处 《企业技术开发》 2010年第8期49-51,共3页 Technological Development of Enterprise
关键词 多元时间序列 相似性 数据挖掘 改进的BORDA计数 multivariate time series similarity data mining BORDA count
  • 相关文献

参考文献6

  • 1R Agrawal, C Faloutsos, A Swami.Efficient similarity search in sequence databases[C].In: D Lomet ed.Proceeding of the 4th International Conference of Foundations of Data Organization and Algorithms( FODO ), 1993:69-84. 被引量:1
  • 2Donald J.Berndt, James Clifford.Using Dynamic Time Warping to Find Patterns in Time Series [C].In: Proceedings of the KDD Workshop, Seattle, WA. 1994,359-370. 被引量:1
  • 3张建业,潘泉,张鹏,梁建海.基于斜率表示的时间序列相似性度量方法[J].模式识别与人工智能,2007,20(2):271-274. 被引量:36
  • 4Ashiah Singhal, Dale E.Seborg.Clustering of Multivariate Time- Series Data[J].Proceedings of the American control Conference Anchorage, 2002, ( 5 ):8-10. 被引量:1
  • 5张晓花.多元水文时间序列相似性挖掘[D].南京:河海大学,2008. 被引量:1
  • 6D.Black.The Theory of Committees and Elections ( 2nd edition ) [M].London: Cambridge University Press, 1963. 被引量:1

二级参考文献7

  • 1Pavlidis T, Horowitzs S L. Segmentation of Plane Curves. IEEE Trans on Computation, 1974, 23(8): 860-870 被引量:1
  • 2Lee S, Kwon D, Lee S. Minimum Distance Queries for Time Series Data. Journal of Systems and Software, 2004, 69(1/2) : 105-113 被引量:1
  • 3Goldina D Q, Millsteinb T D, Kutlua A. Bounded Similarity Querying for Time-Series Data. Information and Computation, 2004, 194(2) : 203-241 被引量:1
  • 4Keogh E J. Efficiently Finding Arbitrarily Scaled Patterns in Massive Time Series Databases // Proc of the 7th European Conference on Principles and Practice of Knowledge Discovery in Databases. Cavtat-Dubrovnik, Croatia, 2003:253-265 被引量:1
  • 5Vlachos M, Kollios G, Gunopulos D. Discovering Similar Multidimensional Trajectories // Proc of the 18th International Conference on Data Engineering. San Jose, USA, 2002:673-684 被引量:1
  • 6Yi B K, Faloutsos C. Fast Time Sequence Indexing for Arbitrary Lp Norms// Proc of the 26th International Conference on Very Large Databases. Cairo, Egypt, 2000:385-394 被引量:1
  • 7王达,荣冈.时间序列的模式距离[J].浙江大学学报(工学版),2004,38(7):795-798. 被引量:40

共引文献35

同被引文献4

引证文献1

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部