期刊文献+

多传感器加权观测融合Wiener反卷积滤波器

Multisensor Weighted Measurement Fusion Wiener Deconvolution Filter
下载PDF
导出
摘要 基于Kalman滤波方法,应用加权观测融合方法,提出了全局最优观测融合Wiener反卷积滤波器。同集中式观测融合方法和分布式状态融合方法相比,不仅可获得全局最优Wiener反卷积滤波器,而且明显减小计算负担,便于实时应用。一个四传感器加权观测融合仿真例子说明了其有效性。 Based on the Kalman filtering method,applying the weighting measurement fusion method,a globally optimal multisensor measurement fusion Wiener deconvolution filter is presented.Compared with the centralized measurement fusion method and the decentralized state fusion method,not only the globally optimal Wiener signal filter can be obtained,but also the computational burden can obviously be reduced,so that it is suitable for real time application.A simulation example with four-sensor shows its effectiveness.
出处 《科学技术与工程》 2010年第30期7384-7388,共5页 Science Technology and Engineering
基金 国家自然科学基金(60874063)资助
关键词 多传感器 加权观测融合 Wiener反卷积滤波器 Kalman滤波方法 multisensor weighting measurement fusion Wiener deconvolution filter Kalman filtering method
  • 相关文献

参考文献6

二级参考文献4

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部