期刊文献+

多传感器标量加权最优信息融合稳态Kalman滤波器 被引量:52

Multi-sensor optimal information fusion steady-state Kalman filter weighted by scalars
下载PDF
导出
摘要 提出一种新的标量加权多传感器线性最小方差意义下的最优信息融合准则.该准则考虑了局部估计误差之间的相关性,只需计算加权标量系数,避免了加权矩阵的计算,明显减小了计算量,便于实时应用.运用稳态Kalman滤波理论,基于该融合准则,给出了多传感器最优信息融合稳态Kalman滤波器.在所有局部滤波器达到稳态时,只需一次融合便可获得信息融合稳态滤波器,算法简单.仿真例子验证了其有效性. A new multi-sensor optimal information fusion criterion weighted by scalars is presented in the linear minimum variance sense. The criterion considers the correlation among local estimate errors, and only computing the weighted scalar coefficients is needed. Therefore the computational burden can obviously be reduced, and it is convenient to apply in real time. Using steady-state Kalman filtering theory, a multi-sensor optimal information fusion steady-state Kalman filter is given based on this fusion criterion. The information fusion steady-state filter can be obtained only by one time fusing after all local filters enter steady states. Simulation example shows the effectiveness of the proposed method.
出处 《控制与决策》 EI CSCD 北大核心 2004年第2期208-211,共4页 Control and Decision
基金 国防基础科研资助项目.
关键词 多传感器 最优信息融合准则 稳态Kalman滤波器 误差协方差阵 multi-sensor optimal information fusion criterion steady-state Kalman filter error covariance matrix
  • 相关文献

参考文献3

  • 1徐宁寿..随机信号估计与系统控制[M],2001.
  • 2邓自立著..最优滤波理论及其应用 现代时间序列分析方法[M].哈尔滨:哈尔滨工业大学出版社,2000:378.
  • 3申功勋,,孙建峰著..信息融合理论在惯性/天文/GPS组合导航系统中的应用[M],1998:187页.

同被引文献245

引证文献52

二级引证文献244

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部