摘要
建立降膜绝热吸收传热传质过程数学模型,通过Nusselt模型对数学模型简化获得液膜流动速度方程,利用有限差分法对数学模型进行离散化处理,采用TDMA算法进行算法设计,程序迭代算法采用二分法。数值计算喷淋溶液温度、初始浓度、流量和吸收压力对传质系数影响,模拟计算规整填料绝热吸收器内溶液温度和浓度分布规律,并利用实验数据验证模型合理性。该数学模型为规整填料绝热吸收器优化设计提供理论基础。
The mathematical model of adiabatic absorber with structured packings is presented.The simplified velocity relations are attained.Differential equations involved in mathematical model are discretized based on finite differential method.Program procedure is made by means of tridiagonal matrix algorithm and bi-section method.The influence of spray solution temperature,spray solution concentration,solution flowrate and absorber pressure on the mass transfer coefficient is evaluated.The predictions are compared with experimental data.The computational model is the theoretical foundation of optimal design of adiabatic absorber with structured packings.
出处
《河南科技大学学报(自然科学版)》
CAS
北大核心
2010年第5期65-68,75,共5页
Journal of Henan University of Science And Technology:Natural Science
基金
国家自然科学基金项目(50906021)
河南省科技厅科技攻关项目(082102240087)
河南省教育厅自然科学基金项目(2008A48001)
关键词
规整填料
传热传质
数学模型
有限差分法
三对角阵算法
Structured packing
Heat and mass transfer
Mathematical model
Finite differential method
Tridiagonal matrix algorithm