期刊文献+

一类变幂率的无标度网络模型构建和分析 被引量:6

Model construction and analyses of a class of scale-free network with variable power law exponent
下载PDF
导出
摘要 多数现实网络的度分布指数(幂指数)介于(2,3),而BA网络的度分布指数恒等于3.基于BA模型,引入老节点之间的择优连接机制,建立了一类变幂率的无标度网络模型,给出了这类复杂网络演化的解析结果,证明了在不同的参数下,其幂指数介于[2,3].同时指出,BA网络只是该模型的一个特例,通过一些实际网络数据的分析,说明了该网络模型的有效性和合理性. Most of the scaling exponents in real network are scattered between 2and 3,while the exponent of BA network is 3constantly.Based on the BA model,the preferential attachment mechanism between the existing vertexes is imported and a scale-free network whose scaling exponent can change in some certain scope is proposed.The degree distribution is calculated analytically and the analytical results indicate that the scaling exponent varies from 2to 3under different values of the parameters.It is also pointed out that the BA network model is the particular case of the model.And through the analyses of some data of the real networks,the model is proved to be reasonable and effective.
出处 《大连理工大学学报》 EI CAS CSCD 北大核心 2010年第5期811-815,共5页 Journal of Dalian University of Technology
基金 国家自然科学基金资助项目(70571007)
关键词 无标度网络 幂率 BA模型 择优连接 scale-free network power law exponent BA model preferential attachment
  • 相关文献

参考文献13

  • 1BARABASI A L, ALBERT R, JEONG H. Mean-field theory for scale-free random networks [J]. Physica A, 1999, 272(68) :173-187. 被引量:1
  • 2ALBERT R, BARABASI A L. Statistical mechanics of complex networks [J]. Reviews of Modern Physics, 2002, 74(1) :47-97. 被引量:1
  • 3DOROGOVTSEV S N, MENDES J F F. Evolution of networks [J]. Advances in Physics, 2002, 51(4) :1079-1187. 被引量:1
  • 4NEWMAN M E J. The structure and function of complex networks [J]. SIAM Review, 2003, 45(2) : 167-256. 被引量:1
  • 5刘慧,李增扬,陆君安.局域演化的加权网络模型[J].复杂系统与复杂性科学,2006,3(1):36-43. 被引量:12
  • 6KRAPIVSKY P L, REDNER S, LEYVRAZ F. Connectivity of growing random networks [J].Physical Review Letters, 2000, 85(21) : 4629-4632. 被引量:1
  • 7DOROGOVTSEV S N, MENDES J F F. Scaling behaviour of developing and decaying networks [J]. Europhysics Letters, 2000, 52(33) :33-39. 被引量:1
  • 8ALBERT R, BARABASI A L. Topology of evolving networks..local events and universality [J]. Physics Review Letters, 2000, 85(24) :5234-5237. 被引量:1
  • 9章忠志,荣莉莉.BA网络的一个等价演化模型[J].系统工程,2005,23(2):1-5. 被引量:16
  • 10CHEN Fei, CHEN Zeng-qiang, WANG Xiu-feng, et al. The average path length of scale free networks [J]. Communications in Nonlinear Science and Numerical Simulation, 2008, 13(7) : 1405-1410. 被引量:1

二级参考文献40

  • 1汪秉宏,周涛,何大韧.统计物理与复杂系统研究最近发展趋势分析[J].中国基础科学,2005,7(3):37-43. 被引量:33
  • 2李增扬,韩秀萍,陆君安,何克清.内部演化的BA无标度网络模型[J].复杂系统与复杂性科学,2005,2(2):1-6. 被引量:14
  • 3Albert R, Barabási A L. Statistical mechanics of complex networks[J]. Reviews of Modern Physics,2002,74(1):47~97. 被引量:1
  • 4Dorogovtsev S N,Mendes J F F. Evolution of Networks[J]. Advances in Physics, 2002,51(4):1079~1187. 被引量:1
  • 5Newman M E J. The structure and function of complex networks[J]. SIAM Review, 2003,45(2): 167~256. 被引量:1
  • 6Erdos P,Rényi A. On the evolution of random graphs[J]. Publications of the Mathematical Institute of the Hunga- rian Academy of Sciences,1960,5:17~61. 被引量:1
  • 7Watts D J, Strogatz S H. Collective dynamics of ′small-world′ networks[J]. Nature, 1998,393: 440~442. 被引量:1
  • 8Barabási A L, Albert R. Emergence of scaling in random networks[J]. Science, 1999,286: 509~512. 被引量:1
  • 9Barabási A L, Albert R, Jeong H. Mean-field theory for scale-free random networks[J]. Physica A,1999, 272:173~187. 被引量:1
  • 10Dorogovtsev S N,Mendes J F F,Samukhin A N.Structure of growing networks with preferential linking[J].Physical Review Letters, 2000,85(21): 4633~4636. 被引量:1

共引文献26

同被引文献40

引证文献6

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部