期刊文献+

一类无标度合作网络的演化模型 被引量:18

An Evolving Model for Scale-free Collaboration Networks
原文传递
导出
摘要 提出了一类特殊的无标度合作网络的演化模型.利用平均场方法解析计算了节点的增长动态性,证明了该网络是节点度分布符合幂律分布的无标度网络,其幂指数位于2和3之间.给出了节点的集聚系数与度的关系表达式,并证明了网络的平均路径长度最多以网络的对数形式增长.数值模拟结果与理论计算值很好地吻合. The collaboration networks can be found everywhere in real world. Since the collaboration networks have some particular mechanisms leading to their special topological properties, it is significant to construct a corresponding model. In this paper, we propose an evolving model aiming at a special kind of collaboration networks, of which the act-size is fixed. We prove that the degree distribution obeys power-law form with the exponent adjustable between 2 and 3. Also, we obtain the relation expression of vertex degree and its clustering coeficient. In addition, we prove that the increasing tendency of average path length is a little slower than the logarithm of network size. Further more, the simulation results are given out, which are in agreement with the theoretic calculations.
出处 《系统工程理论与实践》 EI CSCD 北大核心 2005年第11期55-60,共6页 Systems Engineering-Theory & Practice
基金 国家自然科学基金重点资助项目(70431001)
关键词 复杂网络 合作网络 复杂系统 无标度 无序系统 complex networks collaboration networks complex systems scale-free disordered systems
  • 相关文献

参考文献17

  • 1Albert R, Barabási A L. Statistical mechanics of complex networks[J]. Reviews of Modern Physics, 2002,74( 1 ): 47 - 97. 被引量:1
  • 2Newman M E J. The structure and function of complex networks[J]. SIAM Review, 2003, 45(2): 167 - 256. 被引量:1
  • 3周涛,柏文洁,汪秉宏,刘之景,严钢.复杂网络研究概述[J].物理,2005,34(1):31-36. 被引量:237
  • 4Watts D J, Strogatz S H. Collective dynamics of 'small-world' networks[J]. Nature, 1998, 393: 440-442. 被引量:1
  • 5Barabási A L, Albert R. Emergence of scaling in random networks[J]. Science, 1999, 286:509 - 512. 被引量:1
  • 6Barabási A L, Albert R, Jeong H. Mean-field theory for scale-free random networks[J]. Physica A,1999, 272:173 - 187. 被引量:1
  • 7章忠志,荣莉莉.BA网络的一个等价演化模型[J].系统工程,2005,23(2):1-5. 被引量:16
  • 8Amaral L A N, Scala A, Barthélemy M,et al. Classes of small-world networks[J]. PNAS, 2000,97(21): 11149 - 11152. 被引量:1
  • 9Newman M E J. Scientific collaboration networks. Ⅰ . Network construction and fundamental results[ J]. Physical Review E, 2001,64(1): 016131. 被引量:1
  • 10Newman M E J. Scientific collaboration networks. Ⅱ . Shortest paths, weighted networks, and centrality[J]. Physical Review E,2001,64(1): 016132. 被引量:1

二级参考文献90

  • 1Watts D J, Strogatz S H. Nature, 1998, 393:440. 被引量:1
  • 2Faloutsos M, Faloutsos P, Faloutsos C. Computer Communications Review, 1999, 29 : 251. 被引量:1
  • 3Liljeros F et al. Nature, 2001, 411 : 907. 被引量:1
  • 4Ebel H, Mielsch L I, Borbholdt S. Phys. Rev. E, 2002, 66 :035103. 被引量:1
  • 5Sen Petal. Phys. Rev. E, 2003, 67:036106. 被引量:1
  • 6Erdos P, Renyi A. Publications of the Mathematical Institute of the Hungarian Academy of Science, 1960, 5:17. 被引量:1
  • 7Erdos P, R6nyi A. Acta Mathematica Scientia Hungary, 1961,12 : 261. 被引量:1
  • 8Bollobas B. Random Graphs. London: Academic Press Inc,1985. 被引量:1
  • 9Milgram S. Psychology Today, 1967, 2:60. 被引量:1
  • 10Barabasi A L, Albert R. Science, 1999, 286:509. 被引量:1

共引文献279

同被引文献369

引证文献18

二级引证文献139

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部