期刊文献+

基于最小均方误差估计的噪声相关UKF设计 被引量:7

Design of UKF with correlative noises based on minimum mean square error estimation
原文传递
导出
摘要 传统Unscented卡尔曼滤波器(UKF)要求系统噪声和量测噪声必须是互不相关的.针对此局限性,研究了一类带相关噪声的非线性离散系统UKF设计方法.基于最小均方误差估计和正交变换,给出了噪声相关UKF滤波递推公式,并采用Unscented变换(UT)来计算系统状态的后验分布.所设计的UKF有效解决了传统UKF在噪声相关条件下非线性滤波失效的问题,拓展了UKF的应用范围.最后,仿真实例表明了所设计UKF的有效性. Unscented Kalman filter(UKF) for a class of nonlinear discrete-time systems with correlative noises is designed to overcome the limitation that the conventional UKF calls for system noise and measurement to be irrelative. Recursive filtering equations of UKF with correlative noises are given based on minimum mean square error estimation and orthogonal transformation, and unscented transformation(UT) is applied to calculation the posterior distribution of the nonlinear system state. The proposed UKF solves the problem of nonlinear filtering failure in conventional UKF when system noise is correlated with measurement noise, so it expands the applications of the conventional UKF. A simulation example shows the effectiveness of the designed UKF.
出处 《控制与决策》 EI CSCD 北大核心 2010年第9期1393-1398,共6页 Control and Decision
基金 国家自然科学基金项目(60974104)
关键词 非线性离散系统 噪声相关条件下UKF 最小均方误差估计 正交变换 Unscented变换 Nonlinear discrete-time systems UKF with correlative noises Minimum mean square error estimation Orthogonal transformation Unscented transformation
  • 相关文献

参考文献10

  • 1Julier S J, Uhlmann J K. A new method for the nonlinear transformation of means and covariances in filters and estimators[J]. IEEE Trans on Automatic Control, 2000, 45(3): 477-482. 被引量:1
  • 2Julier S J, Uhlmann J K. A general method for approximating nonlinear transformation of probability distributions[R]. London: University of Oxford, 1996. 被引量:1
  • 3潘泉,杨峰,叶亮,梁彦,程咏梅.一类非线性滤波器——UKF综述[J].控制与决策,2005,20(5):481-489. 被引量:230
  • 4Julier S J, Uhlmann J K. A general method for approximating nonlinear transformation of probability distributions[EB/OL]. 1996. http://www.eng.ox.ac.ukL. 被引量:1
  • 5Merwe R V. Sigma-point Kalman filters for probabilistic inference in dynamic state-space models[EB/OL]. 2004. http://www.cslu.ogi.edu/. 被引量:1
  • 6Seong Yun Cho, Byung Doo Kim. Adaptive IIR/FIR fusion filter and its application to the INS/GPS integrated system[J]. Automatica, 2008, 44(8): 2040-2047. 被引量:1
  • 7柳明,刘雨,苏宝库.改进的UKF在惯导平台误差模型辨识中的应用[J].控制与决策,2009,24(1):129-132. 被引量:5
  • 8Kalman R E. A new approach to linear filtering and prediction theory[J]. J of Basic Engineering, 1960, 82(4): 35-46. 被引量:1
  • 9Kalman R E, Bucy R S. New results in linear filtering and prediction theory[J]. J of Basic Engineering, 1961, 83(4): 95-108. 被引量:1
  • 10付梦印等编著..Kalman滤波理论及其在导航系统中的应用[M].北京:科学出版社,2003:215.

二级参考文献79

  • 1杨波,秦永元,柴艳.UKF在INS/GPS直接法卡尔曼滤波中的应用[J].传感技术学报,2007,20(4):842-846. 被引量:24
  • 2Romanenko R, CasLro J. The unscented filler as an alternative to the EKF for nonlinear state estimation: A simulation case study [J]. Computers and Chemical Engineering, 2004, 28(3): 347-355 被引量:1
  • 3Julier S, Uhlmann J, Durrant-Whyte H F. A new method for the nonlinear transformation of means and covariance in filters and estimators[J]. IEEE Trans on Automatic Control, 2000, 45(3): 477-482. 被引量:1
  • 4Julier S, Uhlmann J. Unscented filtering and nonlinear estimation [J]. Proc of the IEEE Aerospace and Electronic Systems, 2004, 92(3): 401-422. 被引量:1
  • 5Xiong K, Zhang H Y, Chan C W. Performance evaluation of UKF-based nonlinear filtering [J]. Automatica, 2006, 42(2): 261-270. 被引量:1
  • 6Arulampalam S,Maskell S,Gordon N,et al.A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J].IEEE Trans on Signal Processing,2002,50(2):174-188. 被引量:1
  • 7Thrun S,Fox D,Burgard W,et al.Robust monte carlo localization for mobile robots[J].Artificial Intelligence,2001,128(1-2):99-141. 被引量:1
  • 8Julier S J,Uhlmann J K,Durrant-Whyten H F.A new approach for filtering nolinear system[A].Proc of the American Control Conf[C].Washington:Seattle,1995:1628-1632. 被引量:1
  • 9Julier S J,Uhlmann J K.A general method for approximating nonlinear transformations of probability distributions[EB/OL].http://www.robots.ox.ac.uk/~siju/work/publications/Unscented.zip,1997-09-27. 被引量:1
  • 10Julier S J,Uhlmann J K.A consistent,debiased method for converting between polar and Cartesian coordinate systems[A].The Proc of AeroSense:The 11th Int Symposium on Aerospace/Defense Sensing,Simulation and Controls[C].Orlando,1997:110 -121. 被引量:1

共引文献233

同被引文献93

引证文献7

二级引证文献105

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部