期刊文献+

基于小波神经网络的化学反应器故障模式识别 被引量:1

Fault Pattern Recognition of Chemical Reactor Based on Wavelet Neural Network
下载PDF
导出
摘要 利用具有BP算法的前馈神经网络(MFNN),针对反应器建立了过程数据与故障类型之间的对应关系,辨识出系统的正常运行状态与故障运行状态。为了提高辨识的准确度,利用小波技术改进MFNN的作用函数构成了小波神经网络(WNN)。对化学反应器中的一类典型反应过程进行了仿真实验,实验结果表明,WNN的故障辨识比MFNN的故障类型辨识具有更高的准确率。 Using the multilayer forward neural networks(MFNN)based on back propagation(BP)algorithm,the relationship between the process measurements and fault type was constructed,the identification of the normal state and fault state was achieved.For improving the accuracy of identification,wavelet technology was used,the activation function of MFNN was modified and wavelet neural network(WNN)was constructed.The simulation results of a classical reaction process of chemical reactor show that WNN has higher accuracy than MFNN for fault identification.
作者 刘晓琴
出处 《辽宁石油化工大学学报》 CAS 2010年第3期79-81,89,共4页 Journal of Liaoning Petrochemical University
关键词 故障 辨识 小波神经网络 Fault Identification Wavelet neural network
  • 相关文献

参考文献8

二级参考文献12

共引文献13

同被引文献17

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部