期刊文献+

基于改进小波网络的TE过程故障诊断

Fault Diagnosis of Tennessee-Eastman Process Based on the Improved Wavelet Network
下载PDF
导出
摘要 针对BP算法容易陷入局部极小值、收敛速度慢及容易振荡等缺点,采用小波BP网络且对小波网络采用基于梯度符号变化的局部学习率自适应算法和引入动量项的改进。将改进后的算法对多变量非线性的田纳西-伊斯曼过程进行了仿真研究,结果表明改进算法提高了故障分类的辨识精度。 BP algorithm trends to fall into the local minimum value, slow convergence speed and frequent oscillation. The wavelet BP network was used, and self-adaptive learning rate algorithm based on the sign change of gradient and momentum item were added in it. The improved algorithm was applied in Tennessee-eastman process of a multiple-variable and nonlinear system. The results show that the algorithm can improve the recognition accuracy of fault classification.
出处 《辽宁石油化工大学学报》 CAS 2007年第4期64-67,共4页 Journal of Liaoning Petrochemical University
关键词 小波网络 故障诊断 TE过程 Wavelet network Fault diagnosis Tennessee - eastman process
  • 相关文献

参考文献14

  • 1Russel E I,, Chiang L H, Braatz R D. Fault detection in industrial processes using canonical variate analysis and dynamic principal component analysis[J]. Chemometrics and intel, lab. sysr. , 2000,51:81-93. 被引量:1
  • 2Kano M, Hasebe S, Hashimoto I. A new multivariate statistical process monitoring method using principal component analysis[J]. Computers and chemical engineering, 2001, 25 : 1103-1113. 被引量:1
  • 3Gertler J, Li W, Huang Y, et al. Isolation enhanced principal component analysis[J]. AICHE J. , 1999,45:323-334. 被引量:1
  • 4Chiang L H , Russel E L, Braatz R D. Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis[J]. Chemometrics and intel, lab. syst. , 2000, 50: 243-252. 被引量:1
  • 5Kano M, Nagao K, Hasebe S, et al. Comparison of multivariate statistical process monitoring methods with applications to the Eastman challenge problem[J]. Computers and chemical engineering, 2002,26:161-174. 被引量:1
  • 6Kugarajah T,Zhang Qing-hua. Multi dimensional wavelet frames[J]. IEEE trans, on nn. ,1995, 6(6):1552-1556. 被引量:1
  • 7Bosmans R F. Detecttion and early diagnosis of potential failures of rotating machinery: machinery instrumentation and diagnostics seminar[R]. USA : Bently Nevada, 1988. 被引量:1
  • 8Szu H, Telfer B, Kadambe S, et al. Neural network adaptive wavelets neural for signal representation and classification[J]. Optical engineering, 1992,31 (9) : 1907-1916. 被引量:1
  • 9李微,谭阳红,彭永进.基于小波神经网络的电力电子电路故障模式识别[J].继电器,2005,33(14):82-86. 被引量:7
  • 10何苗,刘希莲,李金屏,杨波.BP小波神经网络自适应调节步长的改进算法[J].济南大学学报(自然科学版),2001,15(4):315-318. 被引量:8

二级参考文献24

  • 1文东日,陈明明.用遗传算法求解网络最短路效率[J].石油化工高等学校学报,2005,18(1):73-76. 被引量:2
  • 2程肇基,徐德洪.诊断电力电子电路故障的一种新方法—基函数法[J].中国电机工程学报,1989,9(5):22-29. 被引量:30
  • 3刘明军 李金屏 等.基于BP算法的小波神经网络对于一维数据的有损压缩[J].南京大学学报,2000,36(11):103-108. 被引量:2
  • 4[2]Rao, S. S. , and Kumthekar, B. , "Recurrent Wavelet Networks", Neural networks for signal processing Ⅲ : proceedings of the 1993 IEEE-SP Workshop IEEE, 3143-3147 (1993). 被引量:1
  • 5Zhang Q, Benveniste A. Wavelet Networks [J].IEEE Trans on Neural Net, 1992,3 (11):889-898. 被引量:1
  • 6焦李成.神经网络的应用与实现[M].西安:西安电子科技大学出版社,1996.. 被引量:40
  • 7Zhang Q, Penveniste A. Wavelet network[J]. Proc. IEEE Trans.On Neural Network, 1992, 3(6): 889~898. 被引量:1
  • 8Harold H S, Brain T, Shubha K. Neural network adaptive wavelet for signal representation and classification[J]. Optical Engineering, 1992,31(9): 1907~1916. 被引量:1
  • 9Zhang J, Walter G G, Miao Y B, et al. Wavelet neural networks for function leaming[J]. IEEE Trans on Signal Processing, 1995, 43(6): 1485~1496. 被引量:1
  • 10张立明.人工神经网络的模型及其应用[J].上海:复旦大学出版社,1994 被引量:1

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部