期刊文献+

两类广义Lucas等距子列的前n项和公式

Sum Formulae of Isometric Sub-Sequences in two Types of Generalizing Lucas
下载PDF
导出
摘要 分别给出两类广义Lucas等距子列的定义,并证明了两类广义Lucas等距子列的统一递推公式,由此推导出它们的前n项和公式,推广了郜舒竹教授2008年在《广义Fibonacci等距子列连续n项和的统一公式》一文中的相关结论. The definitions of two types of generalized Lucas isometric sub-sequences are provided,and their recursions are proved,from which sum formulae are deduced.Thus some related conclusions given by Professor Gao in his paper Sum of Equal Length Generalized Fibonacci Sub-sequences(2008) are extended.
作者 李娟 郜舒竹
出处 《首都师范大学学报(自然科学版)》 2010年第5期4-6,共3页 Journal of Capital Normal University:Natural Science Edition
关键词 FIBONACCI数列 广义Lucas数列 子列 递推 Fibonacci sequence generalized Lucas sequence sub-sequence recursion sum.
  • 相关文献

参考文献6

二级参考文献24

  • 1杨倩丽.数学解题中问题转换的有效途径[J].陕西师范大学学报(自然科学版),2002,30(S1):63-64. 被引量:5
  • 2[1]Duncan R L.Application of uniform distribution to the fibonacci numbers.The Fibonacci Quarterly,1967;3(5):137-140 被引量:1
  • 3[2]Kuipers L.Remark on a paper by R.L.Duncan concerning the Uniform distribution mod 1 of the sequence of the Logarithms of the Fibonacci numbers.The Fibonacci Quarterly,1969;5(7):465-466 被引量:1
  • 4[3]London H,Finkelstein R.On fibonacci and lucas numbers which are perfect powers.The Fibonacci Quarterly,1969;5(7):476-481 被引量:1
  • 5Rotkiewicz A.,Applications of Jacobis symbol to Lehmers numbers[J].Acta Arith.,1983,62:163-187. 被引量:1
  • 6Shorey T.N.,Tijdeman R.,Exponential Diophantine equations[M].Cambridge:Cambridge Univ.press,1986. 被引量:1
  • 7Ribenboim P.,The terms Cxh (h≥3) in Lucas sequences:an algorithm and applications to Diophantine equations[J].Acta Arith.,2003,162:105-114. 被引量:1
  • 8Ribenboim P.,The Fibonacci numbers and the Arctir Ocean.In:Symposia Gaussiana Conf.A,de Gruyter,1995,41-83. 被引量:1
  • 9Ribenboim P.,McDaniel W.L.Square-classes of Lucas sequences[J].Portug.Math.,1991,48:469-473. 被引量:1
  • 10SunQ YuanP-Z.On the Diophantine equation x4—Dy2=1[J].数学进展,1996,25(1):84-85. 被引量:1

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部