期刊文献+

图的逆符号边控制数的上界 被引量:10

Upper Bounds of Inverse Signed Edge Domination Number in Graphs
原文传递
导出
摘要 设G=(V,E)是一个图,对于图G的一个函数f:E→{-1,1),如果对任意e∈E(G),均有,则称f为图G的一个逆符号边控制函数.图G的逆符号边控制数(?)′_s(G)=为图G的一个逆符号边控制函数}.本文在定义了逆符号边控制数的基础上,得到了图的逆符号边控制数的几个上界. Let G =(V,E) be a graph,a function f:E→{-1,1} is said to be a inverse signed edge dominating function of G,if holds for every edge e∈E(G). The inverse signed edge domination number of G,denoted as(?)′_s(G),equals max is a inverse signed edge dominating function of G}.On the basis of the inverse signed edge domination number of a graph G defined,some upper bounds of(?)′_s(G) for general graphs are obtained.
出处 《应用数学学报》 CSCD 北大核心 2010年第5期840-846,共7页 Acta Mathematicae Applicatae Sinica
基金 河北省自然科学基金(A2008000128) 河北省教育厅2009年自然科学研究计划(2009331)资助项目
关键词 逆符号边控制数 上界 graphs inverse signed edge domination number upper bound
  • 相关文献

参考文献13

  • 1Bondy J A, Murty V S R. Graph Theory with Applications. Amsterdam: Elsevier, 1976. 被引量:1
  • 2Dunbar J E, Hedetniemi S T, Henning M A, Slater P J. Signed Domination in Graphs. Combinatorics, Graph Theory, Applications, 1995, 1:311-322. 被引量:1
  • 3Favaron O. Signed Domination in Regular Graphs. Discrete Mathematics, 1996, 158:287-293. 被引量:1
  • 4Hattingh J H, Ungerer E, Henning M A. Partial Signed Domination in Graphs. Ars Combinatoria, 1998, 48:33-42. 被引量:1
  • 5Zhang Z, Xu B, Li Y, Liu L. A Note on the Lower Bounds of Signed Domination Number of a Graph. Discrete Mathematics, 1999, 195:295-298. 被引量:1
  • 6Matousek J. On the Signed Domination in Graphs. Combinatica, 2000, 20:103-108. 被引量:1
  • 7Zelinka B. Signed Total Domination Number of a Graph. Czechoslovak Mathematieical Journal, 2001, 51:225-229. 被引量:1
  • 8Xing H M, Sun L, Chen X G. Signed Total Domination in Graphs. Journal of Beijing Institute of Technology, 2003, 12(3): 319-321. 被引量:1
  • 9Xing H M, Sun L. On the Lower Bounds of Partial Signed Domination Number of Graphs. Ars Combinatoria, 2005, 74:269-273. 被引量:1
  • 10Xing H M, Sun L, Chen X G. On a Generalization of Signed Total Dominating Functions of Graphs. Ars Combinatoria, 2005, 77:205-215. 被引量:1

同被引文献47

引证文献10

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部