期刊文献+

一种基于权重的时间序列相似性度量 被引量:3

A WEIGHT-BASED SIMILARITY METRICS FOR TIME SERIES
下载PDF
导出
摘要 依据时间序列的形态特征,为基于欧氏距离的相似性度量加入奖惩因子,使其能反映序列形态的相似性。同时根据相关的背景知识给时间序列不同的维设定不同的权重,并给出一种自动求权重集合的算法。该算法成功应用于福泉高速行车数据以及仿真数据的相似性度量。 In this paper we added the rewards and punishment factor into the Euclidean similarity metrics according to the morphological characteristics of time series to enable it being able to represent the similarity of the series morphology. Besides, we set different weight to dif- ferent dimensions of time series according to corresponding background knowledge, and proposed an algorithm for automatic weight set search. The algorithm has been applied to the similarity metrics of Vehicle Traffic Data of the Fuquan Expressway and its simulation successfully.
出处 《计算机应用与软件》 CSCD 2010年第9期116-118,共3页 Computer Applications and Software
基金 福建省青年创新基金(2006F3075)
关键词 时间序列 权重 形态 相似性 Time-series Weight Morphology Similarity
  • 相关文献

参考文献5

  • 1Rakesh Agrawal,Christos Faloutsos,Arun Swami.Efficient similarity search in sequence database[C] //Proceedings of the 4th International Conference on Foundations of Data Organization and Algorithm.1993,page 69-84,Volume 730. 被引量:1
  • 2董晓莉,顾成奎,王正欧.基于形态的时间序列相似性度量研究[J].电子与信息学报,2007,29(5):1228-1231. 被引量:34
  • 3Eamonn Keogh,Chotirat Ann Ratanamahatana.Exact indexing of dynamic time warping[J].Knowledge and Information Systems,Mar.2005,7(3):358-386. 被引量:1
  • 4Zhenzhi Huang,Zhenfeng He.A novel approach to extract speed pattern from VTDR data[C] //Proceedings of the International Conference on Intelligent Computation Technology and Automation (ICICTA 2008),Oct 2008:209-214. 被引量:1
  • 5Jain A,Murty M,Flynn P.Data Clustering:A Review[J].ACM computing surveys,1999,31(3):264-323. 被引量:1

二级参考文献8

  • 1Chung Fu-Lai,Fu Tak-Chung,Ng V,and Luk Rt W P.An evolutionary approach to pattern-based time series segmentation.IEEE Trans.on Evolutionary Computation,2004,8(5):471-489. 被引量:1
  • 2Shatkay H and Zkonik S B.Approximate queries and representations for large data sequences.in Proc.Int.Conf.Data Engeering.Los Alamitos,CA:IEEE Computer Society Press,1996:536-545. 被引量:1
  • 3Das G,Lin K I,and Mannila H.Rule discovery from time series,in Proc.ACM SIGKDD Int.Conf.Knowledge Discovery Data Mining,New York City,1998:16-22. 被引量:1
  • 4Kai O Y,Jia W,Zhou P,and Meng X.A new approach to transforming time series into symbolic sequences,in Proc.1st Joint BMES/EMBS Conf.,Atlanta,GA,USA Oct.1999,vol.2:974. 被引量:1
  • 5Keogh E and Pazzani M.An enhanced representation of time series which allows fast and accurate classification,clustering and relevance feedback.In proceedings of the 4th Int'l Conference on Knowledge Discovery and Data Mining.New York,NY,Aug 27-31.1998:239 241. 被引量:1
  • 6Hyndman R J.http://www-personal.buseco.monash.edu.au/~hyndman/tsdl/data/FVD1.dat.2002-12. 被引量:1
  • 7姜宁,史忠植.文本聚类中的贝叶斯后验模型选择方法[J].计算机研究与发展,2002,39(5):580-587. 被引量:21
  • 8王达,荣冈.时间序列的模式距离[J].浙江大学学报(工学版),2004,38(7):795-798. 被引量:40

共引文献33

同被引文献33

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部