期刊文献+

基于神经网络的自动送钻过程安全监控 被引量:4

SAFETY MONITORING CONTROL DURING BIT AuTOMATIC FEEDING ON NEURAL NETWORK
下载PDF
导出
摘要 提出了一种新的自动送钻过程安全监控方法——神经网络法,并利用生产实际中的数据验证这种方法的可行性。通过计算机训练和实际应用表明,这种方法不需要建立确定的数学关系式,对输入参数没有严格的要求,可以利用有限的数据,通过联想学习,得出比较理想的监控效果,可以克服传统方法的缺陷,满足自动送钻过程安全监控对实时性的要求。 Abstract A new inethod , neural network method, for safety monrtoring control during 'oit automatic feeding is putforward, and the feasibility of this method is tested and verified with the data of the practical production.Training with computer and practical application show that this method does not need to established a definiteniathematical relation, does not has a strict dernand to input parameters. can associatively learn from the fi-nite data and attains more perfect the nionitoring control results, can overcorne the shortcon'ings of the conventional methods . meets the meed of the safety monitoring control during bit automatic feeding to real time.
作者 史玉升
出处 《石油矿场机械》 1999年第3期28-31,共4页 Oil Field Equipment
基金 中国博士后基金
  • 相关文献

参考文献3

  • 1胡守仁 余少波.神经网络导论[M].长沙:国防科技大学出版社,1992.113-129. 被引量:34
  • 2Shi Yusheng,地球科学,1997年,8卷,2期,154页 被引量:1
  • 3胡守仁,神经网络导论,1992年,113页 被引量:1

共引文献33

同被引文献14

  • 1施小成,谢睿,丁宗华.一种基于模糊神经网络的信息融合技术[J].自动化技术与应用,2006,25(1):8-10. 被引量:3
  • 2史玉升,左静,江进国,补家武.基于专家系统的钻机实时故障诊断与控制方法[J].石油机械,1996,24(3):27-32. 被引量:6
  • 3许德章,何去非.多传感器集成与信息融合原理[J].安徽工程科技学院学报(自然科学版),2006,21(2):74-78. 被引量:6
  • 4胡守仁.神经网络导论[M].北京:国防科大出版社,1995.113. 被引量:14
  • 5林尧瑞 马少平.人工智能导论[M].北京:清华大学出版社,1987.. 被引量:2
  • 6Lin C T, Lee C S G. Reinforcement structure parameter learning for neural-network - based fuzzy logic control system [ C ] . IEEE Transactions on Fuzzy Systems, 1994, 2 (1): 46-63. 被引量:1
  • 7Kotrla, John E. A new drilling system that safely allows a significant reduction of drilling costs - Environmental Safe Guard (ESG) [ C ] . Proceedings of the Annual Offshore Technology Conference, 2002, 3 (2): 2373 - 2380. 被引量:1
  • 83,Shi Yusheng, Liang Shuyun, Li Hongjie.Application of artificial neural network toreal-time condition monitoring control and usual trouble diagnosis during drilling.Journalof China University of Geosciences,1997,8(2):154~157 被引量:1
  • 9Chris Rhodes. Intelligent planning reduces nonproductive drilling times[J]. Oilfield Review,2001,13(2) : 1 -4. 被引量:1
  • 10Shi Yuesheng, Liang Shuyun, Li Hongjie. Application of Artificial Neural Network to Real - Time Condition Moni- toring Control and Usual Trouble Diagnosis during Drilling [ J]. Journal of China University of Geosciences, 1997,8 (2) :154 - 157. 被引量:1

引证文献4

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部