期刊文献+

关联规则中FP-tree的最大频繁模式非检验挖掘算法 被引量:5

Non-check mining algorithm of maximum frequent patterns in association rules based on FP-tree
下载PDF
导出
摘要 基于FP-tree的最大频繁模式挖掘算法是目前较为高效的频繁模式挖掘算法,针对这些算法需要递归生成条件FP-tree、做超集检验等问题,在分析DMFIA-1算法的基础上,提出了最大频繁模式的非检验挖掘算法NCMFP。该算法改进了FP-tree的结构,使挖掘过程中不需要生成条件频繁模式树也不需要超集检验。算法采用的预测剪枝策略减少了挖掘的次数,采用的求取公共交集的方式保证了挖掘结果的完整性。实验结果表明在支持度相对较小情况下,NCMFP的效率是同类算法的2~5倍。 The algorithms based on FP-tree,for mining maximal frequent patterns,have high performance but with many drawbacks.For example,they must recursively generate conditional FP-trees,have to do the process of superset checking.In order to overcome these drawbacks of the existing algorithms,an algorithm Non-Check Mining algorithm of Maximum Frequent Pattern(NCMFP)for mining maximal frequent patterns was put forward after the analysis of DMFIA-1 algorithm.In the algorithm,neither constructing conditional frequent pattern tree recursively nor superset checking was needed through modifying the structure of FP-tree.This algorithm reduced the number of mining through early prediction before mining.The application of a method to get the public intersection sets could obtain a complete result.The experiment shows that the efficiency of NCMFP is two to five times as much as that of the similar algorithms in the case of a relatively small support.
作者 惠亮 钱雪忠
出处 《计算机应用》 CSCD 北大核心 2010年第7期1922-1925,共4页 journal of Computer Applications
基金 江苏省自然科学基金资助项目(BK20003017)
关键词 关联规则 数据挖掘 频繁模式树 最大频繁项集 超集检验 association rule data mining Frequent Pattern Tree(FP-tree) maximum frequent itemsets superset checking
  • 相关文献

参考文献11

二级参考文献45

  • 1马丽生,邓辉文,齐逸.一种新的最大频繁项目集挖掘算法[J].计算机应用,2006,26(11):2670-2673. 被引量:6
  • 2Han Jia-wei,Kamber M.Data ruing:concepts and techniques[M]. [S.l.]:Morgan Kaufmann Publishers,2001.225-279. 被引量:1
  • 3Agrawal R,Srikant R.Fast algorithms for mining association rules[C]// Proc of 1994 Int'l Conf on Very Large Data Bases.Santiago,Chili: VLDB Endowment, 1994. 487-499. 被引量:1
  • 4Park J S,Chen M S,Yu P S.An effective Hash-based algorithm for mining association rules[C]//Proc of 1995 ACM-SIGMOD Int'l Conf on Management of Datal.San Jose,CA:ACM Press,1995. 175-186. 被引量:1
  • 5Agrawal R,Srikant R.Mining sequential patterns[C]//ICDE'951. Taipei,Taiwan:IEEE Computer Society Press, 1995.3-14. 被引量:1
  • 6Brin S,Motwani R,Silverstein C.Beyond market basket: Generalizing association rules to correlations[C]//SIGMOD'97,1997:265-276. 被引量:1
  • 7Pasquier N,Bastide Y,Taouil R,et al.Discovering frequent closed itemsets for association rules[C]//ICDT'99,1999.398-416. 被引量:1
  • 8Zaki M,Hsiao C.CHARM:an effcient algorithm for closed itemset mining[C]//SDM' 02,2002 . 34-43. 被引量:1
  • 9Burdick D,Calimlim M,Gehrke J.MAFIA:amaximal frequent itemset algorithm for transactional databases[C]//ICDE'01,2001.443-452. 被引量:1
  • 10Pei J,Han J,Mao R.CLOSET:an efficient algorithm for mining frequent closed itemsets[C]//DMKD'00,2000.11-20. 被引量:1

共引文献231

同被引文献24

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部