期刊文献+

一种改进的适于安全审计数据分析的关联算法 被引量:1

Improved Correlation Algorithm Suitable for the Analysis of the Security Audit Data
下载PDF
导出
摘要 为了提高挖掘用户频繁行为模式的速度和FP-树空间利用率,从而显著提高安全审计数据分析的效率,本文在FP-growth算法的基础上提出了一种改进的适于安全审计数据分析的挖掘频繁模式算法。与FP-growth算法相比,改进算法在挖掘频繁模式时不生成条件FP-树,挖掘速度提高了1倍以上,所需的存储空间减少了一半。 In order to improve the speed of mining user frequent behavior pattern and FP-tree space utilization, thereby significantly improving the efficiency of security audit data analysis, based on the FP-growth algorithm this paper proposes an improved correlation algorithm suitable for the analysis of the security audit data. Experiments show that in comparison with FP-growth, the proposed algorithm does not generate conditional FP-tree in mining process and it has accelerated the mining speed by at least two times and reduced the space consumption by half.
出处 《信息工程大学学报》 2007年第1期22-25,共4页 Journal of Information Engineering University
关键词 关联规则 频繁模式 FP-GROWTH算法 correlation rule frequent pattern FP-growth algorithm
  • 相关文献

参考文献5

二级参考文献16

  • 1Agrawal R, Srikant R. Fast algorithms for mining association rules [A]. Proceedings of the 20th International Conference on Very Large Data Bases [C]. USA: Morgan Kaufmann, 1994. 487--499. 被引量:1
  • 2Han J, Fu Y. Discovery of multiple-level association rules from large databases [A]. Proceedings of the 21st International Conference on Very Large Data Bases [C]. USA: Morgan Kaufmann, 1995. 420--431. 被引量:1
  • 3Srikant R, Agrawal R. Mining generalized association rules[A]. Proceedings of the 21st International Conference on Very Large Data Bases [C]. USA: Morgan Kaufmann, 1995. 407--419. 被引量:1
  • 4Han J, Pei J, Yin Y. Mining frequent patterns without candidate generation [A]. Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data [C]. USA. ACM Press, 2000. 1--12. 被引量:1
  • 5Agrawal R, Aggarwal C, Prasad V V V. A tree projection algorithm for generation of frequent itemsets [J]. Journal of Parallel and Distributed Computing, 2000,61(3): 350--371. 被引量:1
  • 6Srikant R, Agrawal R. Mining quantitative association rules in large relational tables [A]. Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data [C]. USA: ACM Press,1996. 1--12. 被引量:1
  • 7Bayardo R J. Efficiently mining long patterns from databases [A]. Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data [C]. USA: ACM Press, 1998. 85--93. 被引量:1
  • 8Pasquier N, Bastide Y, Taouil R,Lakhal L. Discovering frequent closed itemsets for association rules [A]. Proceedings of the 7th International Conference on Database Theory [C]. USA: Springer, 1999. 398--416. 被引量:1
  • 9R Agrawal, R Srikant. Fast algorithms for mining association rules. In: Proc of 1994 Int'l Conf on Very Large Data Bases.Santiago, Chili: VLDB Endowment, 1994. 487--499. 被引量:1
  • 10J S Park, M S Chen, P S Yu. An effective Hash-based algorithm for mining association rules. In: Proc of 1995 ACM-SIGMOD Int'l Cord on Management of Data. San Jose, CA: ACM Press,1995. 175--186. 被引量:1

共引文献98

同被引文献8

引证文献1

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部