期刊文献+

人机交互中的人脸信息曲波分析 被引量:2

Face processing in human-computer Interaction using curvelet analysis
原文传递
导出
摘要 视觉交互是自然人机交互的重要组成部分,而人脸特征提取则是视觉交互成功的关键。针对小波变换难以充分描述人脸曲线特征的缺点,为了更好地提取人脸特征,将更符合人类视觉特性的曲波变换用于人脸信息处理,提出了结合曲波变换与Adaboost方法的人脸检测优化方法和基于曲波变换与SVM进行表情分析的新方法,并开展了人脸检测、人脸识别与表情分析的对比实验。实验结果显示,曲波变换在人脸特征提取中具有明显优势,从而为自然人机交互的下一步工作打下了坚实基础。 Vision interaction is one of important aspects of human-computer interaction, and the facial feature extraction is crucial to vision interaction. This paper applies the curvelet transform to the face processing to extract facial feature more effectively. It overcomes the weakness of the wavelet transform which is unable to efficiently extract curve features of face images. An optimized method based on Adaboost and curvelet transform is proposed for face detection. A new approach combining SVM and eurvelet transform is designed for facial expression recognition. Experiments on face detection, face recognition and facial expression recognition are carried out. The results reveal that eurvelet transform has distinct advantages in facial feature extraction, and lays a good foundation for the further work of the natural human-computer interaction.
出处 《中国图象图形学报》 CSCD 北大核心 2010年第9期1309-1317,共9页 Journal of Image and Graphics
基金 国家自然科学基金项目(NSFC-60672071) 浙江省自然科学基金重大项目(D1080807)
关键词 曲波变换 人脸检测 人脸识别 表情分析 人机交互 curvelet transform face detection face recognition facial expression recognition human-computer interaction
  • 相关文献

参考文献23

  • 1张有为等著..人机自然交互[M].北京:国防工业出版社,2004:256.
  • 2Pardas M,Losada M.Facial parameter extraction system based on active contours[C]//Proceedings of IEEE 2001 International Conference on Image Processing.Washington,DC,USA:IEEE Computer Society,2001,1:1058-1061. 被引量:1
  • 3Turk M,Pentland A.Eigenfaces for recognition[J].Journal of Cognitive Neuroscience,1991,3(1):71-86. 被引量:1
  • 4Chellappa R,Eremad K.Discriminant analysis for recognition of human face images[J].Journal of Optical Society of American,1997,8(14):1724-1733. 被引量:1
  • 5Comon P,Independent component analysis,a new concept?[J].Signal Processing,1994,36(3):287-314. 被引量:1
  • 6Zhao W,Chellappa R,Phillips P J,et al.Face recognition:A literature survey[J].ACM Computer Survey,2003,35(4):399-458. 被引量:1
  • 7Hafed Z M,Levine M D.Face recognition using the discrete cosine transform[J].International Journal of Computer Vision Special issue:Research at McGill University,2001,43(3):167-188. 被引量:1
  • 8Mandal T,Majumdar A,Wu Q M J.Face recognition by curvelet based feature extraction[C]//Lecture Notes in Computer Science,Berlin,Germany:Springer-Verlag,2007,4633:806-817. 被引量:1
  • 9Hong Z Q.Algebraic feature extraction of image for recognition[J].Pattern Recognition,1991,24(3):211-219. 被引量:1
  • 10Majumdar A,Bhattacharya A.A comparative study in wavelets,curvelets and contourlets as feature sets for pattern recognition[J].The International Arab Journal of Information Technology,2009,6(1):47-51. 被引量:1

二级参考文献17

  • 1Mase K.Recognition of facial expression from optical flow[J].IEICE Transactions,1991,74(10):3474 - 3484. 被引量:1
  • 2Yacoob Y,Davis L.Recognizing human facial expressions form long image sequences using optical flow[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1994,16 (6):636 - 642. 被引量:1
  • 3Otsuka T,Ohya J.Recognizing multiple persons facial expressions using HMM based on automatic extraction of significant frames from image sequence[A].In:Proceedings of the International Conference on Image Processing[C],California,USA,1997:546 -549. 被引量:1
  • 4Donato G,Bartlett M S,Hager J C,et al.Classifying facial actions[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1999,21(10):974 - 989. 被引量:1
  • 5Turk M,Pentland A.Eigenfaces for recognition[J].Journal Cognitive Neuro-science,1991,3 (1):71 - 86. 被引量:1
  • 6Belhumeour P N,Hespanha J P,Kriegman D J.Eigenfaces vs.fisherfaces:recognition using class specific linear projection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):711 -720. 被引量:1
  • 7Lyons M J,Akamatsu S,Kamachi M,et al.Coding facial expressions with Gabor wavelets[A].In:Proceedings of the Third IEEE International Conference on Automatic Face and Gesture Recognition[C],Nara,Japan,1998:200 - 205. 被引量:1
  • 8Zhang Z,Lyons M,Schuster M,et al.Comparison between geometry-based and Gabor-wavelets-based facial expression recognition using multi-layer perceptron[A].In:Proceedings of the Third IEEE International Conference on Automatic Face and Gesture Recognition[C],Nara,Japan,1998:454 -459. 被引量:1
  • 9Daugman J G.Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression[J].IEEE Transactions on Acoustic,Speech and Signal Processing,1988,36(7):1169 -1179. 被引量:1
  • 10Lee T S.Image representation using 2D Gabor wavelets[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1996,18(10):959 -971. 被引量:1

共引文献35

同被引文献16

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部