期刊文献+

基于特征层和二代曲波变换的多模生物特征融合识别方法 被引量:4

An Algorithm for Multimodal Biometric Recognition Based on Feature Level and the Second-Generation Curvelet Transform
下载PDF
导出
摘要 针对单模生物特征识别方法在实际应用中存在识别正确率较低的问题,提出了一种基于特征层和二代曲波变换的单样本多模生物特征融合识别方法,其采用了2种生物特征:掌纹特征和人脸特征.将所有归一化后的学习样本图像和测试图像通过组合的快速离散曲波变换和小波变换进行分解,系数经组合和规范化处理后,在特征层实现融合,融合后的特征参数送入K-最近邻分类器进行分类,从而获得最终识别结果.在香港理工大学掌纹数据库和Ljubljana大学人脸数据库上的实验结果表明,所提方法在每个类别仅使用1个学习样本的情况下,其生物特征图像的最佳平均识别正确率达到92.40%,比单模人脸、单模掌纹识别方法的识别率分别提高了35.38%和8.92%. A single sample biometric recognition approach is proposed based on the feature level and curvelet transform of the second-generation to improve the recognition rate of the single modal hiometric system in application. Two kinds of biometric features are used. These are the palm-print feature and the face feature. All image samples are normalized and decomposed using the combination of curvelet & wavelet transform. Then the normalized curvelet & wavelet-trans- formed face and palm-print features are combined at the feature fusion level. The K-NN classifier is used to determine the final biometric classification, and then the recognition results are reported. The experimental results show that the proposed approach has better performance than the single modal solution: the best average recognition rate is improved to 92.4%,and the recognition rate is improved by 35.38% and 8. 92% compared with single face feature and single palmprint feature respectively.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2009年第10期32-36,共5页 Journal of Xi'an Jiaotong University
基金 国家高技术研究发展计划资助项目(2005AA121130) 国家自然科学基金资助项目(60602025)
关键词 多模生物特征识别 曲波变换 人脸识别 掌纹识别 图像融合 multimodal biometric recognition curvelet transform face recognition palmprint recognition image fusion
  • 相关文献

参考文献15

  • 1JAIN A K. Biometric recognition [J]. Nature, 2007, 449(9) :38-40. 被引量:1
  • 2LU J, PLATANIOTIS K N, VENETSANOPOULOS A N. Face recognition using kernel direct discriminant analysis algorithms[J]. IEEE Trans on Neural Net, 2003, 14(1): 117-126. 被引量:1
  • 3JING Xiaoyuan, YAO Yongfang, ZHANG David. Face and palmprint pixel level fusion and kernel DCVRBF classifier for small sample biometric recognition [J]. Pattern Recognition, 2007, 40(11): 3209-3224. 被引量:1
  • 4JAIN A K, NANDAKUMAR K, ROSS A. Score normalization in multimodal biometric systems [J]. Pattern Recognition, 2005, 38(12): 2270-2285. 被引量:1
  • 5YAO Yongfang, JING Xiaoyuan, WONG H S. Face and palmprint feature level fusion for single sample biometrics recognition[J]. Neurocomputing, 2007, 70 (5) : 1582-1586. 被引量:1
  • 6CANDES E J, DEMANET L, DONOHO D L, et al. Fast discrete curvelet transforms, DMS01-40698 [R]. Pasadena, CA, USA: California Institute of Technology, 2005:1-43. 被引量:1
  • 7LI Shutao, YANG Bin. Multifocus image fusion by combining curvelet and wavelet transform [J]. Pattern Recognition Letters, 2008, 29(2): 1295-1301. 被引量:1
  • 8许学斌,张德运,张新曼,潘煜.采用二代曲波变换和反向传播神经网络的人脸识别方法[J].西安交通大学学报,2008,42(10):1213-1216. 被引量:5
  • 9MANDAL T, JONATHAN Q M, WU Yuanyuan. Curvelet based face recognition via dimension reduction [J]. Signal Processing, 2009, 89(12):2345-2353. 被引量:1
  • 10李晖晖,郭雷,刘航.基于二代curvelet变换的图像融合研究[J].光学学报,2006,26(5):657-662. 被引量:89

二级参考文献26

共引文献111

同被引文献32

  • 1李伟红,龚卫国,陈伟民,梁毅雄,尹克重.基于小波分析与KPCA的人脸识别方法[J].计算机应用,2005,25(10):2339-2341. 被引量:6
  • 2王振飞,施保昌,王能超.基于曲波变换的图像融合方法[J].小型微型计算机系统,2007,28(3):533-536. 被引量:6
  • 3何国辉,甘俊英,李春芝,高建虎.人脸与虹膜特征层融合模型的研究[J].电子学报,2007,35(7):1365-1371. 被引量:15
  • 4Amira A, Farrell P. An Automatic Face Recognition System Based on Wavelet Transforms[C]// IEEE International Symposium on Circuits and Systems, Kobe, Japan, May 23-26, 2005: 6252-6255. 被引量:1
  • 5LIU Cheng-jun, Wechsler H. Independent Component Analysis of Gabor Features for Face Recognition [J]. IEEE Transactions on Neural Networks(S1045-9227), 2003, 14(4): 919-928. 被引量:1
  • 6Rahman S, Naim S M, Al Farooq A, et al. Curvelet Texture Based Face Recognition Using Principal Component Analysis [C]// Proceedings of 13th International Conference on Computer and Information Technology (ICCIT 2010), Dhaka, Bangladesh, December23-25, 2010: 45-50. 被引量:1
  • 7Mandal T, Jonathan Q M, WU Yuan-yuan. Curvelet Based Face Recognition via Dimension Reduction [J]. Signal Processing (S0165-1684), 2009, 89(12): 2345-2353. 被引量:1
  • 8WU Xian-xing, ZHAO Jie-yu. Curvelet Feature Extraction for Face Recognition and Facial Expression Recognition[C]//2010 Sixth International Conference on Natural Computation (ICNC 2010), Yantai, Shandong, China, August 10-12, 2010: 1212-1216. 被引量:1
  • 9CHIBANI Y, HOUACINE A. Redundant versus orthogo- nal wavelet decomposition for multisensor image fusion[J]. Pattern Recognition, 2003, 36(4).. 879-887. 被引量:1
  • 10CANDES E J, DONOHO D L. Curvelets.. a surprisingly effective nonadaptive representation for objects with edges[C]// Curve and Surface Fitting. Nashville: Vanderbilt University Press, 1999. 被引量:1

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部