摘要
研究Kaehler-Einstein流形M上Rastogi;联络的拟共形曲率张量场W-,证明了若-W是平行的,则M是拟共形对称的.也得到关于M共圆对称的对应条件和结果,推广了Rastogi,贾兴琴等的工作.
Quasi conformal curvature tensor fields W^- of Rastogi Connections in Kaehler-Einstein Manifolds M has been studied.We proved that M is of quasi conformal symmetric if W^- is of parallel.The corresponding condition and Result on concircular symmetric is also obtained.Works of Rastogi.Jai Xinqin have been generalized.
出处
《大学数学》
2010年第3期60-63,共4页
College Mathematics
基金
河南省教育厅自然科学基金(2008B110002
200510475038)
河南大学自然科学基金(2004YB12W042)