期刊文献+

针对不确定正例和未标记学习的最近邻算法(英文) 被引量:2

Nearest Neighbor Algorithm for Positive and Unlabeled Learning with Uncertainty
下载PDF
导出
摘要 研究了在正例和未标记样本场景下不确定样本的分类问题,提出了一种新的算法NNPU(nearest neighbor algorithm for positive and unlabeled learning)。NNPU具有两种实现方式:NNPUa和NNPUu。在UCI标准数据集上的实验结果表明,充分考虑数据不确定信息的NNPUu算法要比仅仅考虑样本中不确定信息均值的NNPUa算法具有更好的分类能力;同时,NNPU算法在对精确数据进行分类时,比NN-d、OCC以及aPUNB算法性能更优。 This paper studies the problem of uncertain data classification under positive and unlabeled (PU) learning scenario. It proposes a novel algorithm, NNPU (nearest neighbor algorithm for positive and unlabeled learning), to handle this problem with two varieties, NNPUa and NNPUu. Experimental results on benchmark UCI datasets show that NNPUu, which considers the whole uncertain information on the datasets, has a better ability to classify unseen examples than NNPUa that considers the average value of uncertainty only. Furthermore, NNPU outperforms some existing algorithms such as NN-d, OCC (one-class classifier) and aPUNB in handling precise data.
出处 《计算机科学与探索》 CSCD 2010年第9期769-779,共11页 Journal of Frontiers of Computer Science and Technology
基金 The National Natural Science Foundation of China under Grant No.60873196 the Fundamental Research Funds for the Central Universities under Grant No.QN2009092~~
关键词 不确定数据 正例和未标记样本学习 最近邻算法 uncertain data positive and unlabeled learning nearest neighbor algorithm
  • 相关文献

参考文献21

  • 1Ren J, Lee S D, Chen X, et al. Naive Bayes classification of uncertain data[C]//Proceedings of IEEE International Conference on Data Mining, 2009. 被引量:1
  • 2Tsang S, Kao B, Yip K Y, et al. Decision trees for uncertain data[C]//Proceedings of IEEE International Conference on Data Engineering, 2009: 441--444. 被引量:1
  • 3Liu B, Dai Y, Li X, et al. Building text classifiers using positive and unlabeled examples[C]//Proceedings of IEEE International Conference on Data Mining, 2003: 179-186. 被引量:1
  • 4Fung G P C, Yu J X, Lu H, et al. Text classification without negative examples revisits[J]. 1EEE Transactions on Knowledge and Data Engineering, 2006, 18 (1): 6-20. 被引量:1
  • 5Calvo B, Larranaga P, Lozano J. Learning Bayesian classifiers from positive and unlabeled examples[J]. Pattern Recognition Letters, 2007, 28(16): 2375-2384. 被引量:1
  • 6Tax D, Duin R. Data description in subspaces[C]//Proceedings of International Conference on Pattern Recognition, 2000: 672-675. 被引量:1
  • 7Tax D M J, Duin R P W. Support vector domain description[J]. Pattern Recognition Letters, 1999,20:1191-1199. 被引量:1
  • 8Scholkopf B, Platt J, Shawe-Taylor J, et al. Estimating the support of a high-dimensional distribution[J]. Neural Computation, 2001, 13(7): 1443-1471. 被引量:1
  • 9Hempstalk K, Frank E, Witten I. One-class classification by combining density and class probability estimation[C]// Proceedings of European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, 2008: 505-519. 被引量:1
  • 10He J, Zhang Y, Li X, et al. Naive Bayes classifier for positive and unlabeled learning with uncertainty[C]// Proceedings of SIAM International Conference on Data Mining, 2010. 被引量:1

同被引文献17

  • 1韩慧,毛锋,王文渊.数据挖掘中决策树算法的最新进展[J].计算机应用研究,2004,21(12):5-8. 被引量:47
  • 2Dietterich T G.Ensemble methods in machine learning[M] //Multiple Classifier Systems.Berlin:Springer,2000:1-15. 被引量:1
  • 3Banfield R E,Hall L O,Bowyer K W,et al.A comparison of decision tree ensemble creation techniques[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2007,29(1):173-180. 被引量:1
  • 4Webb G I,Boughton J R,Zheng Fei,et al.Learning by extrapo-lation from marginal to full-multivariate probability distributions:decreasingly naive Bayesian classification[J].Machine Learning,2012,86(2):233-272. 被引量:1
  • 5Dinis F,Gilleron R,Letouzey F.Learning from positive and unlabeled examples[J].Theoretical Computer Science,2005,348(1):70-83. 被引量:1
  • 6Yu H,Han J,Chang K.PEBL:positive example based learning for Web page classification using SVM[C] //Proc of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM Press,2002:239-248. 被引量:1
  • 7Liu Bing,Lee W S,Yu P S,et al.Partially supervised classification of text documents[C] //Proc of the 19th International Conference on Machine Learning.2002:387-394. 被引量:1
  • 8Denis F,Laurent A,Gilleron R,et al.Text classification and co-training from positive and unlabeled examples[C] //Proc of ICML Workshop:the Continuum from Labeled to Unlabeled Data.2003:80-87. 被引量:1
  • 9He Jiazhen,Zhang Yang,Li Xue,et al.Bayesian classifiers for positive unlabeled learning[C] //Proc of the 12th International Confe-rence on Web-Age Information Management.2011:81-93. 被引量:1
  • 10Webb G I,Boughton J R,Wang Z H.Not so naive Bayes:aggregating one-dependence estimators[J].Machine Learning,2005,58(1):5-24. 被引量:1

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部