摘要
用锥不动点定理,建立了形如{y′(t)=-a(t)y(t)+g(t,y(t-τ(t)))t≠tj y(tj+)=y(tj-)+Ij(y(tj))j∈Z的脉冲泛函微分方程3个正周期解存在的充分条件,其中,a∈C(R,R+),τ∈C(R,R),g∈C(R×[0,∞),[0,∞)),a,τ,g是ω-周期函数.
By using a fixed point theorem in cones,some sufficient conditions are established for the existence of three positive periodic solutions for a kind of nonautonomous functional differential equations with impulses and delays of the form {y′(t)=-a(t)y(t)+g(t,y(t-τ(t)))t≠tj y(t+j)=y(t-j)+Ij(y(tj))j∈Zwhere a∈C(R,R+),τ∈C(R,R),g∈C(R×[0,∞),[0,∞)),and a,τ,g are ω-periodic functions,and ω0 is a constant.
出处
《西南大学学报(自然科学版)》
CAS
CSCD
北大核心
2010年第8期123-128,共6页
Journal of Southwest University(Natural Science Edition)
关键词
泛函微分方程
脉冲
正周期解
不动点定理
functional differential equation
impulse
positive periodic solution
fixed point theorem