期刊文献+

依赖于参数的泛函微分方程正周期解的存在性

Existence of Positive Periodic Solutions for Functional Differential Equation Depending on Parameter
下载PDF
导出
摘要 考虑依赖于参数的泛函微分方程x′(t)=-a(t)g(x(t))x(t)+λb(t)f(t,x(t-τ_1(t)),x(t-τ_2(t)),…,x(t-τ_n(t))).利用不动点定理,得到了上述方程正周期解存在的充分条件。 Abstract: Considering functional differential equation de pending on parameterx′(t)=-a(t)g(x(t))x(t)+λb(t)f(t,x(t-τ1(t)),x(t-τ2(t)),…,x(t-τn(t))), by using the fixed point index theorem, the sufficient condition is established for the existence of positive periodic solutions of the above equation.
作者 张小英
出处 《山西农业大学学报(自然科学版)》 CAS 2009年第2期190-192,共3页 Journal of Shanxi Agricultural University(Natural Science Edition)
关键词 泛函微分方程 不动点定理 正周期解 参数 Functional differential equation The fixed point theorem Positive periodic solutions Parameter
  • 相关文献

参考文献6

  • 1Li Yongkun, Lifei Zhu, Ping Liu. Positive periodic solutions of nonlinear functional differential equations depending on a parameter[J]. Mathematics and Computation with Applications, 2004, 48: 1458-1459. 被引量:1
  • 2Liu Xi Lan, Wan Tong Li. Existence and uniqueness of positive periodic solutions functional differential equations [J]. J. Math. Anal. Appl. 2004, 293: 28-39. 被引量:1
  • 3Liu Y. , W. Ge. Positive periodic solutions of nonlinear Dulling equations with delay and variable coefficients [J].Tarnsui Oxf. J. Math. Sci., 2004, 20 (2):235-255. 被引量:1
  • 4Wang H. Positive periodic solutions of functional differential equations[J]. J. Differential equations. 2004, 202: 354-366. 被引量:1
  • 5Liu Guirong, Aimin Zhao, Jurang Yan. Existence and global attractivity of unique positive periodic solution for a Lasota-Wazewska model[J]. Nonlinear Analysis, 2006,64:1737-1746. 被引量:1
  • 6Li Rong kun, I,inghong Lu. Positive periodic solutions of higher-dimensional nonlinear functional differential equations [J]. J. Math. Anal. Appl., 2005, 309:284-293. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部