摘要
考虑依赖于参数的泛函微分方程x′(t)=-a(t)g(x(t))x(t)+λb(t)f(t,x(t-τ_1(t)),x(t-τ_2(t)),…,x(t-τ_n(t))).利用不动点定理,得到了上述方程正周期解存在的充分条件。
Abstract: Considering functional differential equation de pending on parameterx′(t)=-a(t)g(x(t))x(t)+λb(t)f(t,x(t-τ1(t)),x(t-τ2(t)),…,x(t-τn(t))), by using the fixed point index theorem, the sufficient condition is established for the existence of positive periodic solutions of the above equation.
出处
《山西农业大学学报(自然科学版)》
CAS
2009年第2期190-192,共3页
Journal of Shanxi Agricultural University(Natural Science Edition)
关键词
泛函微分方程
不动点定理
正周期解
参数
Functional differential equation
The fixed point theorem
Positive periodic solutions
Parameter