摘要
定义了一类与可变锥结构相关的非线性标量化函数,利用这类标量化函数,把具有可变锥结构的向量优化问题转化为数值优化问题,并证明向量优化问题的有效解或强有效解与非线性标量化函数的最优解或严格解是等价的.
A class of nonlinear scalarization function under variable domination structure was defined.By applying this nonlinear scalarization function,a vector optimization problem under variable domination structure was convert to a scalar optimization problem.Moreover,the fact that an efficient solution or a strong efficient solution of vector optimization under variable domination structure was equivalent to a minimal solution or a strict solution of nonlinear scalarization function was proved.
出处
《安徽大学学报(自然科学版)》
CAS
北大核心
2010年第4期44-47,共4页
Journal of Anhui University(Natural Science Edition)
基金
国家自然科学基金资助项目(60703118)
关键词
非线性标量化函数
向量优化问题
有效解
可变锥结构
nonlinear scalarization function
vector optimization problem
efficient solution
variable cone structure