期刊文献+

黎曼流形上弱向量似变分不等式解的存在性 被引量:4

Existence of Solutions to Weak Vector Variational-Like Inequalities on Riemannian Manifolds
下载PDF
导出
摘要 在黎曼流形上分别给出了伪不变凸函数和弱向量似变分不等式的概念.研究这类弱向量似变分不等式和向量优化问题弱有效解之间的关系.利用最大元定理证明了弱向量变分不等式解的存在性,并给出了向量优化问题弱有效解存在的条件. The definitions of pseudo-invex function and weak vector variation-like inequality on Riemannian manifolds are presented. The relationship between this kind of weak vector variation-like inequalities and the weak efficient solution of vector optimization problems is obtained. By using the maximum element theorem, the existence theorem for weak vector variational-like inequalities defined on Riemannian manifolds is given. Moreover, the conditions for the existence of weak efficient solution to vector optimization problems are presented.
出处 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第4期44-47,共4页 Journal of Southwest University(Natural Science Edition)
基金 国家自然科学基金资助项目(60574075)
关键词 变分不等式 黎曼流形 LIPSCHITZ函数 伪不变凸函数 弱有效解 variational inequality Riemannian manifold Lipschitz function pseudo-invex function weak efficient solution
  • 相关文献

参考文献12

  • 1Azagra D, Ferrera J, Lopez-Mesas F. Nonsmooth Analysis and Hamilton-Jacobi Equations on Smooth Manifolds [J]. Joural of Functional Analysis, 2005, 220(2) : 304-- 361. 被引量:1
  • 2Ferreira O P. Dini Derivative and a Characterization for Lipschitz and Convex Functions on Riemannian Manifolds [J]. Nonlinear Analysis, 2008, 68(6): 1517- 1528. 被引量:1
  • 3肖刚,刘三阳.移动机器人在曲面上的建模与分析[J].武汉理工大学学报(交通科学与工程版),2008,32(1):24-27. 被引量:1
  • 4肖刚,刘三阳,尹小艳.微分流形上的最优化算法[J].西安电子科技大学学报,2007,34(3):472-475. 被引量:7
  • 5Nemeth S Z. Variational Inequalities on Hadamard Manifolds [J]. Nonlinear Analysis, 2003, 52(5): 1491 --1498. 被引量:1
  • 6肖刚,刘三阳.黎曼流形上非可微多目标规划的必要最优性条件[J].吉林大学学报(理学版),2008,46(2):209-213. 被引量:6
  • 7Barani A, Pouryayevali M R. Invex Sets and Preinvex Functions on Riemannian Manifolds [J]. Journal of Mathematical Analysis and Applications, 2007, 328(2) : 767 -- 779. 被引量:1
  • 8Su C H, Sehgal V M. Some Fixed Point Theorems for Condensing Multifunctions in Locally Convex Spaces [J].Proceedings of the National Academy of Sciences of U S A, 1975, 50(3) : 150 -- 154. 被引量:1
  • 9Lin L J, Yu Z T, Ansari Q H. Fixed Point and Maximal Element Theorems With Applications to Abstract Economies and Minimax Inequalities [J]. Journal of Mathematical Analysis and Applications, 2003, 284(56): 656 --671. 被引量:1
  • 10Clarke F H, Ledyaev Y S, Stenn R J, et al. Nonsmooth Analysis and Control Theory [M]. New York: Springer-Verlag, 1998: 69--96. 被引量:1

二级参考文献39

共引文献15

同被引文献34

  • 1LIUSan-ming,FENGEn-min,LIXiao-shen.Another Approach to Multiobjective Programming Problems with V-invex Functions[J].Chinese Quarterly Journal of Mathematics,2005,20(1):101-110. 被引量:1
  • 2Luc D T.Scalarization of vector optimization problems[J].Journal of Optimization Theory and Applications,1987,55(1):85-102. 被引量:1
  • 3Gutierrez C,Jimenez B,Novo V.On approximate solutions in vector optimization problems via scalarization[J].Computational Optimization and Applications,2006,35(3):305-324. 被引量:1
  • 4Crespi G P,Guerraggio A,Rocca M,et al.Well posedness in vector optimization problems and vector Variational inequalities[J].Journal of Optimization Theory and Applications,2007,132(1):213-226. 被引量:1
  • 5Crespi G P,Ginchev I,Rocca M,et al.Variational inequalities in vector optimization[M].Variational Analysis and Applications,Kluwer Academic,Dordrecht,2004,79(2):259-278. 被引量:1
  • 6Chen G Y,Yang X Q,Yu H,et al.A Nonlinear scalarization function and generalized quasi-vector equilibrium problems[J].Journal of Global Optimization,2005,32(4):451-466. 被引量:1
  • 7Chen G Y,Yang X Q.Characterizations of variable domination structures via a nonlinear scalarization[J].Journal of Optimizaton Theory and Applications,2002,12(1):97-110. 被引量:1
  • 8Evans B C.On the basic theorem of complementarity[J].Mathematical Programming,1971,1(1):68-75. 被引量:1
  • 9Chen G Y,Goh C J,Yang X Q,et al.Vector network equilibrium problems and nonlinear scalarization methods[J].Mathematical Methods of Operations Research,1999,49(2):239-253. 被引量:1
  • 10HANSON M A. On Sufficiency of the Kuhn-Tuck Conditions [J]. Journal of Mathematical Analysis and Applications, 1981, 80: 545--550. 被引量:1

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部