期刊文献+

地下矩形洞室应力分布的复变函数解 被引量:6

A Semi-Analytical Elastic Stress Solution for Perimeter Stresses of Rocks Around a Rectangular
原文传递
导出
摘要 为了解决矩形洞室稳定性问题,利用复变函数在处理复杂形状边界方面的优势,对矩形洞室问题进行应力分析。计算得出矩形洞室围岩应力集中系数,并对矩形洞室不同高长比条件下应力变化规律,远场不同应力比情况下洞室围岩的应力变化规律进行研究,研究结果表明:随着应力比的增加,与最大主应力方向垂直的顶板和底板的应力集中系数线性增加,与最小远场应力方向垂直的边墙应力集中系数线性减小;随着洞室几何高长比的增大,洞室顶板和底板的应力集中系数线性增加,边墙应力集中系数线性减小。研究对地下工程的稳定性分析及支护设计具有指导意义。 For the sake of researching the influence of the load bearing capacity for underground rectangular chambers.We calculate the surrounding stress distribution of the rectangular chambers by complex function.The stress distribution and the coefficients of stress concentration on boundary of openings are obtained when height and width ratio and stress ratio are altered.The result declares:the coefficients of stress concentration of roof is increasing and the coefficients of stress concentration of wall is reducing while stress ratio is increasing.The coefficients of stress concentration of roof is increasing and the coefficients of stress concentration of wall is reducing while height and width ratio is increasing.The practical significance of the study lies in the fact that it can be used as guiding sense to the rectangular chambers excavates,the supports and protections plan characteristic and the principle.
出处 《北华航天工业学院学报》 CAS 2010年第4期1-6,共6页 Journal of North China Institute of Aerospace Engineering
关键词 矩形洞室 保角映射 复变理论 应力集中 rectangular chambers conformal mapping complex theory stress concentration
  • 相关文献

参考文献7

  • 1M.Cai,P.K.Kaiser,etal.Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations[J].Internationl journal of Rock Mechanics & Mining Sciences,2004,41,833-847. 被引量:1
  • 2G.E.Exadaktylos,P.A.Liolios,M.C.Stavropoulou,A semi-analytical elastic stress-displacement solution for notched circular openings in rocks,int[J].Journal of solids and structures,2003,40,1165-1187. 被引量:1
  • 3Vahid Hajiabdolmajid,Peter Kaiser.Brittleness of rock and stability assessment in hard rock tunneling[J].Tunnelling and underground space technology,2003,18,35-48. 被引量:1
  • 4赵凯,刘长武,张国良.用弹性力学的复变函数法求解矩形硐室周边应力[J].采矿与安全工程学报,2007,24(3):361-365. 被引量:40
  • 5R.Jones,D.Peng.A simple method for computing the stress intensity factors for cracks at notches[J].Engineering Failure Analysis,2002,9,683-702. 被引量:1
  • 6V.G.Ukadgaonker,D.K.N.Rao.Stress distribution around triangular holes in anisotropic plates[J].Composite Structures,1999,45,171-183. 被引量:1
  • 7Norio Hasebe,XianFeng Wang,Masao Kondo.Green's functions for plane problem under various boundary conditions and applications,int[J].Journal of Solids and Structures,2003,40,5037-5049. 被引量:1

二级参考文献2

  • 1[5]林可益.坝体内的孔口和廊道[M].北京:水利电力出版社,1982:50-87. 被引量:1
  • 2徐志英.岩石力学[M].北京:中国水利水电出版社,2002.. 被引量:5

共引文献39

同被引文献67

引证文献6

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部