摘要
对于受地表边界和地面荷载影响的浅埋隧道的围岩应力场,由于在数学处理上存在一定的困难,很难用解析解来进行分析,而通常采用边界元或有限元的数值方法来解答。为了求解浅埋隧道的应力场,采用边界配点来确定边界条件,同时用保角映射将一个含圆孔的半无限空间区域映射为圆环域,然后把这个区域内的解析函数展开成Laurent级数的形式,利用Muskhelishvili的复变函数理论和最小二乘法来确定解析函数的各项系数,从而求得浅埋隧道围岩压力的半数值、半解析解,最后通过算例给出了围岩应力的分布情况。计算结果表明,该方法计算精度高、计算量小,具有应用价值。
对于受地表边界和地面荷载影响的浅埋隧道的围岩应力场,由于在数学处理上存在一定的困难,很难用解析解来进行分析,而通常采用边界元或有限元的数值方法来解答。为了求解浅埋隧道的应力场,采用边界配点来确定边界条件,同时用保角映射将一个含圆孔的半无限空间区域映射为圆环域,然后把这个区域内的解析函数展开成Laurent级数的形式,利用Muskhelishvili的复变函数理论和最小二乘法来确定解析函数的各项系数,从而求得浅埋隧道围岩压力的半数值、半解析解,最后通过算例给出了围岩应力的分布情况。计算结果表明,该方法计算精度高、计算量小,具有应用价值。
出处
《岩土力学》
EI
CAS
CSCD
北大核心
2010年第S1期86-90,共5页
Rock and Soil Mechanics
基金
云南省应用基础研究计划项目(No.KKSA200806040)
关键词
保角映射
复变函数
浅埋隧道
半数值半解析解
计算复变函数法
conformal mapping
function of complex variable
shallow tunnel
the semi-analytical and semi-numerical solution
computational function of complex variable method