摘要
给出巴拿赫空间上算子谱的精细划分,证明了巴拿赫空间上的算子T有σ0p(T)=ψ0(T)∩σ(T),σ(T)=σB(T)∪σ0p(T)=σW(T)∪(ψ0(T)∩σ(T)0)∪σ0p(T).
Discusses the fine division of the spectrum of an operator acting on a Banach space and show that σ 0 p(T)=ψ 0(T)∩σ(T),σ(T)=σ B(T)∪σ 0 p(T)=σ W(T)∪(ψ 0(T)∩σ(T) 0)∪σ 0 p(T),T being an operator acting on a Banach space.
出处
《福建师范大学学报(自然科学版)》
CAS
CSCD
1999年第2期11-15,共5页
Journal of Fujian Normal University:Natural Science Edition