期刊文献+

多维数值敏感属性隐私保护数据发布方法 被引量:6

Privacy-preserving data publishing methods for multiple numerical sensitive attributes
下载PDF
导出
摘要 为避免多维数值敏感属性数据发布中的近似猜测攻击,基于分解思想提出了一种有效的数据发布方法(l-MNSA).首先通过按敏感属性值均匀间隔分组的方法,提出针对单维数值敏感属性的l-SNSA算法;然后提出最小距离的思想,通过将敏感属性统一化并按最小距离均匀间隔分组,提出适用于多维数值敏感属性的l-MNSA算法.与以往仅针对单敏感属性的发布算法相比,该算法同时能对多维敏感属性提供较好的保护.实验结果表明,采用l-MNSA算法发布的数据,其组内最小差异与l-SNSA算法针对各维属性分别发布的结果相比,平均降低10%左右,算法时间复杂度仍为O(nlgn).该算法可以较好地均衡发布数据的安全性和可用性,是有效可行的. Proximity breach is a privacy threat specific to numerical sensitive attributes in data publication.This paper tries to remedy the problem by introducing a novel principle called l-MNSA(l-multi numerical sensitive attribute) approach based on the idea of lossy join.Firstly,a data publishing algorithm concentrating on tables with only one numerical sensitive attribute,i.e.l-SNSA(l-single numerical sensitive attribute) algorithm,is proposed,in which the sensitive attribute is grouped by their values.Then,the idea of shortest distance is suggested.By unifying the sensitive attributes value and grouping them by their shortest distance,l-MNSA algorithm is proposed.Compared with previous algorithm for single sensitive attribute,l-MNSA can provide better protection to the multi numerical sensitive attributes.The results show that the minimum difference of data published by l-MNSA is reduced by 10% compasing to that of l-SNSA,meanwhile,the time complexity is O(nlgn).The l-MNSA can better balance the published data's security and availability,being feasible and effective.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第4期699-703,共5页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(60973023) 江苏省自然科学基金资助项目(BK2006095)
关键词 隐私保护 多敏感属性 数值型数据 数据发布 privacy preserving multiple sensitive attributes numerical data data publishing
  • 相关文献

参考文献10

  • 1Sweeney L.K-anonymity:a model for protecting privacy[J].International Journal on Uncertainty,Fuzziness,and Knowledge-Based Systems,2002,10(5):557-570. 被引量:1
  • 2Samarati P.Protecting respondents' identities in microdata release[J].IEEE Transactions on Knowledge and Data Engineering,2001,13(6):1010-1027. 被引量:1
  • 3Li N,Li T.T-closeness:privacy beyond k-anonymity and l-diversity[C]//Proceedings of the 23rd International Conference on Data Engineering.Istanbul,Turkey,2007:106-115. 被引量:1
  • 4Machanavajjhala A,Gehrke J,Kefer D.1-diversity:privacy beyond k-anonymity[C]//Proceedings of the 22nd International Conference on Data Engineering.Atlanta,Georgia,USA,2006:24-35. 被引量:1
  • 5Zhang Q,Koudas N,Srivastava D,et al.Aggregate query answering on anonymized tables[C]//Proceedings of International Conference on Data Engineering.Istanbul,Turkey,2007:116-125. 被引量:1
  • 6Xiao X,Tao Y.Anatomy:simple and effective privacy preservation[C]//Proceedings of the 32nd International Conference on Very Large Data Bases.Seoul,Korea,2006:139-150. 被引量:1
  • 7Li J X,Tao Y F,Xiao X K.Preservation of proximity privacy in publishing numerical sensitive data[C]//Proceedings of ACM Conference on Management of Data.Vancouver,BC,Canada,2008:473-486. 被引量:1
  • 8杨晓春,王雅哲,王斌,于戈.数据发布中面向多敏感属性的隐私保护方法[J].计算机学报,2008,31(4):574-587. 被引量:59
  • 9周水庚,李丰,陶宇飞,肖小奎.面向数据库应用的隐私保护研究综述[J].计算机学报,2009,32(5):847-861. 被引量:221
  • 10Aggarwal C.On k-anonymity and the curse of dimensionality[C]//Proceedings of the 31st International Conference on Very Large Data Bases.Trondheim,Norway,2005:901-909. 被引量:1

二级参考文献90

共引文献263

同被引文献56

  • 1Li JY, Wong R, Fu A et al. Achieving k-anonymity by clustering in attribute hierarchical structures[ C]. Proc of the 8th Int. Conf on Data Warehousing and Knowledge Discovery. Heidelberg: Springer-Verlag, 2006:405-416. 被引量:1
  • 2Samarati P, Sweeney L. Generalizing Data to Provide Anonymity When Disclosing Information (abstract) [ C]//Proc of the Seventeenth ACM SIGACTSIGMOD- SIGART Symposium on Principles of Database Systems. New York:ACM Press, 1998: 188-189. 被引量:1
  • 3Sweeney L. K-anonymity:a Model for Protecting Privacy[ J ]. Journal on Uncertainty, Fuzziness and Knowledge-based Systems, 2002,10(5) : 557-570. 被引量:1
  • 4Sweeney L. Achieving k-Anonymity Privacy Protection Using Generalization and Suppression [ J ]. International Journal on Uncertainty, Fuzziness and Knowledge-based Systems, 10(5) : 571-588, 2002. 被引量:1
  • 5Adam N , Wortmann I C. Security Control Methods for Statistical Databases:A Comparison Study[ J ]. ACM Computing Surveys, 1989, 21 (4) :515-556. 被引量:1
  • 6O' Leafy DE. Knowledge Discovery as a threat to Database Security[ A ]. In: G Piatetsky-Shapiro, W J Frawley eds. Knowledge Discovery in Databases [ M ]. Menlo Park: AAAI Press, Cambridge: Mrr Press, 1991:507-516. 被引量:1
  • 7Agrawal R, Srikant R. Privacy Preserving Data Mining[ C]. Proc of 2000 ACM SIGMOD int. conf on Management of Data. NY:ACMNew York, 2000:439-450. 被引量:1
  • 8Agrawal R, Kieman J, Srikant R et ai. Hippocratic Databases [ C ]. Proc of 28th VLDB Conference, VLDB Endowment, 2002:143-154. 被引量:1
  • 9Machanavajjhal AA, Gehrke J, Kifer D. I-diversity:Privacy beyond k-anonymity [ J ]. ACM Transactions on Knowledge Discovery from Data, 2007,1(1) : 24-33. 被引量:1
  • 10Li N, Li T, Venkatasubramanian S. T-closeness: privacy beyond k-anonymity and 1-diversity [C]. Proc of IEEE 23rd lnt Conf on Data Engineering( ICDE2007 ). Istanbul: IEEE Computer Society, 2007:106-115. 被引量:1

引证文献6

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部