期刊文献+

有r(≥3)个圈仙人掌图的零阶广义Randic指数的界 被引量:4

On Sharp Bounds of the Zero-order General Randic Index of Cacti with r(≥3) Cycles
下载PDF
导出
摘要 设G为一简单连通图,则G的零阶广义Randic指数定义为R0α(G)=∑v∈V(G)dα(v),其中d(v)为顶点v的度数,α为非0和1的实数;图G称之为仙人掌图,如果G的每一块要么是一条边,要么是一个圈.此文主要研究有r(≥3)个圈仙人掌图的零阶广义Randic指数的界. The zero-order general Randic index of a simple connected graph G is defined as R0α(G) = v∈V(∑G) dα(v),where d(v) denotes the degree of v,α is a given real number other than 0 and 1.A graph G is called a cactus if each block of G is either an edge or a cycle.In this paper,we present the sharp bounds of the zero-order general Randic index of cacti with r(≥3) cycles.
出处 《合肥学院学报(自然科学版)》 2010年第3期15-18,共4页 Journal of Hefei University :Natural Sciences
基金 国家自然科学基金项目(10901001) 安徽新华学院重点教研项目(2009jy014)资助
关键词 仙人掌图 零阶广义RANDIC指数 cactus zero-order general Randic index bound
  • 相关文献

参考文献11

  • 1Randic M.On the Characterization of Molecular Branching[J].J Am Chem Soc,1975,97:6609-6615. 被引量:1
  • 2Bollobas B,Erdos P.Graphs of Extremal Weights[J].Ars Combin,1998,50:225-233. 被引量:1
  • 3Kier L B,Hall L H.Molecular Connectivity in Structure-analysis[M].Wiley:Research Studies Press,1986:307-312. 被引量:1
  • 4Pavlovic Lj.Maximal Value of the Zeroth-order Randic Index[J].Discrete Appl Math,2003,127:615-626. 被引量:1
  • 5Li X,Zhao H.Trees with the First Three Smallest and Largest Generalized Topological Indices[J].MATCH Commun Math Chem,2004,50:57-62. 被引量:1
  • 6Hua H,Deng H.On Unicycle Graphs with Maximum and Minimum Zeroth-order General Randic Index[J].J Math Chem,2007,41(2):173-181. 被引量:1
  • 7Wang H,Deng H.Unicycle Graphs with Maximum Generalized Topological Indices[J].J Math Chem,2007,42(2):119-124. 被引量:1
  • 8Lu M,Zhang L,Tian F.On the Randic Index of Cacti[J].MATCH Commun Math Chem,2006,56:551-556. 被引量:1
  • 9Lin A,Luo R.A Sharp Lower Bound of the Randic Index of Cacti with r Pendants[J].Discrete Appl Math Lett,2008,156:1725-1735. 被引量:1
  • 10Bondy J A,Murty U S R.Graph Theory[M].Berlin:Springer,2008. 被引量:1

同被引文献23

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部