期刊文献+

仙人掌图的邻域同调分类 被引量:2

THE NEIGHBORHOOD HOMOLOGY CLASSIFICATION OF CACTUS
原文传递
导出
摘要 仙人掌图是一个简单连通图,其每个块或者是一条边,或者是一个圈.如果两个国的邻城复形的各阶同调群分别同构,则称这两个图是邻城同调的.本文研究了仙人掌的邻域同调群的性质,给出了仙人掌图邻城同调分类的一个充要条件. A cactus is a simple connected graph whose each block is either an edge or a cycle.Having been given two graphs G and H,if the neighborhood homology group of G is isophorsic to the neighborhood homology group of H,then G and H are called neighborhood Homology. This paper discusses the properties of neighborhood Homology groups of a cactus, and gives some methods of the neighborhood homology classification for cactus.
作者 薛秀谦
出处 《山东大学学报(自然科学版)》 CSCD 1994年第1期13-17,共5页 Journal of Shandong University(Natural Science Edition)
基金 国家博士点基金
关键词 邻域复形 邻域同调 仙人掌图 图论 cactus neighborhood complex neighborhood homology
  • 相关文献

参考文献1

  • 1彭允,数学年刊.A,1990年,11卷,6期,677页 被引量:1

同被引文献27

  • 1秦克,杨显文.一类仙人掌图的优美性[J].长春工程学院学报(自然科学版),2004,5(2):50-52. 被引量:2
  • 2薛秀谦.立方图的邻域同调分类[J].中国矿业大学学报,1995,24(4):110-112. 被引量:3
  • 3邓乃杨,田英杰.数据挖掘中的新方法-支持向量机[M].北京:科学出版社.2005:34-48. 被引量:10
  • 4PERNKOPF F, WOHLMAYR M, TSCHIATSCHEK S. Maximum margin Bayesian network classifiers [ J ]. Pattern Analysis and Machine Intelligence, 2012, 34 ( 3 ) : 521- 532. 被引量:1
  • 5PANWAR H, GUPTA S. Advances in Computer Science, Engineering and Applications [ M ]. Berlin : Springer, 2012 : 385-392. 被引量:1
  • 6EIDELMAN V. Optimization strategies for online large-mar- gin learning in machine translation[ C ]//Proceedings of the 7th Workshop on Statistical Machine Translation, Montreal, Canada, 2012: 480-489. 被引量:1
  • 7VAPNIK V. Statistical learning theory[ M]. New York: Wi- ley, 1998: 1-768. 被引量:1
  • 8LEE Y J, I-ISIEH W F, HUANG C F. e-SSVR:A smooth support vector machine for e-insensitive regression [ J ]. IEEE Transactions on Knowledge and data Engineering, 2005, 17(5) : 678-685. 被引量:1
  • 9LIN C F, WANG S D. Fuzzy support vector machines [ J ]. IEEE Transactions on Neural Networks, 2002, 13 (3 : 466-471. 被引量:1
  • 10FABIO A, ALESSANDRO S. A re-weighting strategy for im- proving margins [ J ]. Artificial Intelligence, 2002, 137 : 197-216. 被引量:1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部