期刊文献+

基于小波变换的鲁棒性语音特征提取新方法 被引量:6

A New Robust Speech Feature Extraction Method Based on Wavelet Transform
下载PDF
导出
摘要 提高语音识别系统的鲁棒性是语音识别技术一个重要的研究课题。语音识别系统往往由于训练环境下的数据和识别环境下的数据不匹配造成系统的识别性能下降。为了能得到无噪音的语音识别特性,让语音识别系统在含噪的环境下获得令人满意的工作性能,根据人听觉特性提出了一种鲁棒语音特征提取方法。将小波变换和MFCC算法相结合,在MFCC的前端用小波包变换代替FFT和Mel滤波器组,同时在后端用临界小波变换代替DCT,最后得到鲁棒语音特征。通过实验结果分析表明,将方法用于抗噪声分析可以提高系统的抗噪声能力;同时特征的处理方法对不同噪声有很好的适应性。 Improving the robustness of speech recognition system is an important issue in speech recognition technology.The performance of traditional speech recognition system degrades seriously when the training environments and the testing environments are mismatched.In order to acquire satisfactory performance of speech recognition system under noisy environment,in this essay,a new robust speech feature extraction method based on properties of the human auditory system is presented,which is obtained by using wavelet transform to replace the FFT and Mel filter banks and using critical band wavelet transform to replace the DCT.The result show that the performance of speech recognition system can be improved greatly by using the new method under noise environment and the proposed method is highly applicable.
出处 《计算机仿真》 CSCD 北大核心 2010年第8期355-358,362,共5页 Computer Simulation
关键词 语音识别 特征提取 小波变换 美尔频率倒谱系数 鲁棒性 Speech recognition Feature extraction Wavelet transform MFCC Robustness
  • 相关文献

参考文献6

  • 1韩纪庆等编著..语音信号处理[M].北京:清华大学出版社,2004:328.
  • 2M Orlandi,A Santarelli,D Falavigna.Maximum likelihood endpoint detection with time-domain features[C].Proc.of Eurospeech 2003.1757-1760. 被引量:1
  • 3F Wet,et al.Additive background noise as a source of non2linear mismatch in the cepstral and log2energy domain[J].Computer Speech and Language,2005,19(1):31-54. 被引量:1
  • 4Engin Avci,Zuhtu Hakan Akpolat.Speech recognition using a wavelet packet adaptive network based fuzzy inference system[J].Expert Systems with Applications,2006,31(3):495-503. 被引量:1
  • 5王旭,韩志艳,王健,薛丽芳.基于动静态组合特征参数的语音识别[J].计算机科学,2008,35(7):129-132. 被引量:2
  • 6Khurran Waheed,Kim Weaver,Fathi M Salan.A Robust Algorithm for Detecting Speech Segments Using an Entropic Contrast[C].In:45th IEEE international Midwest symposium on circuit and systems,Tulsa,Oklahoma,2002-8.328-331. 被引量:1

二级参考文献9

  • 1Juang B H. The past,present, and future of speech proceesing. IEEE Signal Processing Magzine, May, 1998. 被引量:1
  • 2Ryeu J K, Chung H S. Chaotic recurrent neural networks and their application to speech recognition[J]. Neurocomputing, 1996,13(2-4) :281/294. 被引量:1
  • 3Rabineer L R, juang B H. Fundamentals of speech Processing and Recognition[M]. Prentice-Hall, 1993. 被引量:1
  • 4何强,何英.MATLAB扩展编成[M].北京:清华大学出版社,2002.6. 被引量:3
  • 5Rioul O, Vetterli M. Wavelets and signal processing. IEEE signal processing Mag. pps. October 1991 : 14-38. 被引量:1
  • 6Wassner H,Chollet G. New Cepstral Representation Using Wavelet Analysis an Spectral Transformation for Robust Speech Recognition//Proceedings. Acoustics, Speech, and Signal Pro cessing. IEEE, 2001 : 260-263. 被引量:1
  • 7Torres Humberto M,Rufiner Hugo L. Automatic Speaker Identification by means of Mel Cepstrum, Wavelet and Wavelets Packets//Proceedings of the 22^nd Annual EMBS international Conference. IL Chicago: July 2000 : 978-981. 被引量:1
  • 8Aihara K, Takabe T, Toyoda M. Chaotic neural networks[J]. PhysLettA, 1990 ( 144 ): 333-340. 被引量:1
  • 9任晓林,胡光锐,徐雄.基于混沌神经网络的语音识别方法[J].上海交通大学学报,1999,33(12):1517-1520. 被引量:4

共引文献1

同被引文献49

引证文献6

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部