期刊文献+

基于小波能谱熵-BP_Adaboost的采煤机摇臂轴承故障诊断 被引量:2

Fault Diagnosis of Shearer Rocker Bearing Based on Wavelet Energy Spectrum Entropy and BP_Adaboost
下载PDF
导出
摘要 针对煤矿井下工作环境恶劣,摇臂轴承经常发生故障,提出一种基于小波能谱熵-BP_Adaboost的采煤机摇臂轴承故障诊断方法。对振动信号进行小波分解,提取各小波系数的能谱熵,以此作为故障特征信息。利用Adaboost算法联合多个BP神经网络,构建BP_Adaboost强分类器。通过实验验证,该方法相比单BP神经网络识别率有很大提高,总体识别精度达到92%,其中外圈轴承故障识别率达96%,具有较好的采煤机摇臂轴承故障诊断能力。 For the poor working environment of the coalface, the rocker bearing fault often occur, a fault diagnosis method of shearer rocker bearing based on wavelet energy spectrum entropy and BP_Adaboost. The vibration signal is decomposed by the wavelet basis, and to extract the energy spectrum entropy of every wavelet coefficients, that are selected as the fault feature information. The BP_Adaboost strong classifier is build by the Adaboost algorithm to joint multiple BP neural network. Experiments show that the recognition rate of using this method has a greatly improve compared with single BP neural network, the overall recognition rate is 92%, and the outer bearing fault recognition rate reach 96%, it has a good fault diagnosis ability of shearer rocker bearing.
作者 韩燕 王汉斌
出处 《煤矿机械》 北大核心 2014年第11期302-304,共3页 Coal Mine Machinery
关键词 小波分解 能谱熵 BP神经网络 BP_Adaboost wavelet decomposition energy spectrum entropy BP neural network BP_Adaboos
  • 相关文献

参考文献8

二级参考文献42

共引文献86

同被引文献80

引证文献2

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部