期刊文献+

利用特征子空间评价与多分类器融合的高光谱图像分类 被引量:8

Hyperspectral Image Classification Based on Feature Subspace Evaluation and Multiple Classifier Fusion
下载PDF
导出
摘要 为应对高光谱图像分类中的特征高维度问题,提出一种基于多分类器融合的高光谱图像分类方法.利用高光谱数据相邻波段的高相关性,通过自适应子空间分解产生多个特征子空间,进而训练生成子分类器;利用ReliefF-S算法,对各特征子空间进行评价并生成各子分类器的权重,最终通过加权表决融合实现分类决策.实验表明,所提方法可有效规避高维特征问题并提升分类性能. A novel approach for hyperspectral image classification is proposed based on fusion of multiple classifiers to deal with the high dimension in applications of hyperspectral image classification.High correlation of neighboring bands of hyperspectral image data is used to generate feature subsets through adaptive subspace decomposition.A modified ReliefF algorithm(ReliefF-S) is proposed to evaluate feature subsets and to generate their corresponding weight values.Member classifiers are trained based on resulting feature subspaces and their weighted majority voting,and then the fusion of multiple classifiers is accomplished.Experimental results show that the proposed approach reduces the dimension of features effectively,and improves the classification performance.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2010年第8期20-24,共5页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(60605009) 国家重点基础研究发展规划资助项目(2007CB311006) 陕西省电子信息系统综合集成重点实验室资助项目(200910A)
关键词 高光谱图像 多分类器融合 自适应子空间分解 加权表决 hyperspectral image multiple classifier fusion adaptive subspace decomposition weighted voting.
  • 相关文献

参考文献12

  • 1PLAZA A,BENEDIKTSSON J A,BOARDMAN J W.Recent advances in techniques for hyperspectral image processing[J].Remote Sensing of Environment 2009,113:S110-S122. 被引量:1
  • 2LANDGREBE D.Hyperspectral image data analysis[J].IEEE Signal Processing Magazine,2002,19(1):17-28. 被引量:1
  • 3LANDGREBE D.On information extraction principles for hyperspectral data:a white paper[R].West Lafayette,Indianan,USA:Purdue University.School of Electrical and Computer Engineering,1997. 被引量:1
  • 4SUN Yijun.Iterative relief for feature weighting:algorithms,theories,and applications[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2007,29(6):1035-1051. 被引量:1
  • 5KUNCHEVA L I.Combining pattern classifiers:methods and algorithms[M].New York,USA:Wiley,2004. 被引量:1
  • 6HOT H.The random subspace method for constructing decision forests[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1998,20(8):832-844. 被引量:1
  • 7TU T M,CHEN C H,WU J L,et al.A fast twostage classification method for high-dimensional remote senaing data EJ].IEEE Trans on Geoscience and Remote Sensing,1998,36(1):182-191. 被引量:1
  • 8ZHANG Ye,MITA D,ZHANG Junping,et al.Adaptive subspace decomposition for hyperspectral data dimensionality reduction[C] // Proceedings of IEEE International Conference on Image Processing.Piscataway,NJ,USA:IEEE,1999:326-329. 被引量:1
  • 9BEHROOZ P.Voting algorithms[J].IEEE Trans on Reliability,1994,43(4):617-629. 被引量:1
  • 10孙亮..高维遥感数据融合与分类的知识发现方法研究[D].西安交通大学,2006:

同被引文献90

  • 1张振跃,查宏远.Principal Manifolds and Nonlinear Dimensionality Reduction via Tangent Space Alignment[J].Journal of Shanghai University(English Edition),2004,8(4):406-424. 被引量:73
  • 2杨凯,陈林,江泓,谈旭东,吴捷,汪洋,岳建国.DDR双能量减影普通胸片与骨组织像诊断肋骨骨折的价值[J].中国医学影像学杂志,2005,13(2):119-121. 被引量:31
  • 3张锦水,何春阳,潘耀忠,李京.基于SVM的多源信息复合的高空间分辨率遥感数据分类研究[J].遥感学报,2006,10(1):49-57. 被引量:132
  • 4KAPPADATH C S, SHAW C C. Dual-energy digital mammography., calibration and inverse-mapping tech- niques to estimate calcification thickness and glandular-tissue ratio [J]. Medical Physics, 2003, 30(6): 1110- 1117. 被引量:1
  • 5CHEN Xi, NISHIKAWA R, CHAN S, et al. Algo- rithmic scatter correction in dual-energy digital mam- mography for calcification imaging [EB/OL]. [2012- 03-02]. http://spiedigitallibrary, org/proeeedings/re- souree/2/psisdg/8313/1/83130E_1. 被引量:1
  • 6BLIZNAKOVA K, KOLITSI Z, PALLIKARAKIS N. Dual-energy mammography: simulation studies [J]. Physics in Medicine and Biology, 2006, 51 (10) : 4497- 4515. 被引量:1
  • 7HAMMERSTEIN G, MILLER D, WHITE D. Ab- sorbed radiation dose in mammography [J]. Radiolo- gy, 1979,130(2) : 485-491. 被引量:1
  • 8FEWELL T R, SHUPING R E. Handbook of mam- mographic X-ray spectra [M]. Washington DC, USA: HEW Publication (FDA), 1978. 56-69. 被引量:1
  • 9BERGER M, HUBBEL J,SELTZER S, et al. XCOM: photon cross sections database, NIST standard refer- ence database 8 (XGAM) [EB/OL]. [2011-11-25]. http//: www. physics, nist. gov/PhysRefData/Xcom/ Text/XCOM. html. 被引量:1
  • 10LUO Tao, MOU Xuanqin, TANG Shaojie. An applica- bility research on JND model [EB/OL]. (2006-03-07) [2011-11-25]. http://spiedigitallibrary, org/proceed-ings/ resource/ 2 / psisdg/ 614 6 /1/ 614 610_1. 被引量:1

引证文献8

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部