期刊文献+

基于分块特征点密度的多特征融合遥感图像场景分类

Remote Sensing Image Classification Based on Fusion of Multiple Features with Block Feature Point Density Analysis
下载PDF
导出
摘要 随着遥感等对地观测技术的发展,遥感图像分辨率越来越高。相比于中低分辨率遥感图像,高分辨率遥感图像能够提供更详细的地面信息,但各种地物空间结构分布较复杂。本文针对高分辨率遥感图像中不同目标的各种特征有效性不同,及彼此存在互补现象,提出一种分层多特征融合的场景分类方法。该方法首先对图像进行预分类,粗分为特征点分布均匀与不均匀两大类;然后,对分布均匀类别提取颜色直方图特征和Gabor纹理特征,对分布不均匀类别提取ScSPM(基于稀疏编码的空间金字塔匹配)特征;最后分别训练支持向量机分类器对测试图像进行分类。在一个2100幅图像构成的大型遥感图像数据库上的实验结果表明,提出的算法比仅用单一特征分类方法的最高精度提高了10%;与其他融合方法相比,提出的方法取得了最高分类精度,达到了90.1%;算法时间复杂度也大为降低。 With the development of remote sensing and the related techniques, the resolution of these images is largely improved. Compared with moderate or low resolution images, high-resolution images can provide more detailed ground information. Howev- er, a variety of terrain has complex spatial distribution. The different objectives of high-resolution images have a variety of fea- tures. The effectiveness of these features is not the same, and some of them are complementary. Considering the above character- istics, a new method is proposed to classify remote sensing images based on the hierarchical fusion of multi-feature. Firstly, these images are pre-classified into two categories in terms of whether feature points are uniform or non-uniform distributed. Then, the color histogram and Gabor texture feature are extracted from the uniform distributed categories, and the SeSPM( linear spatial pyr- amid matching using sparse coding)feature is obtained from the non-uniform distributed categories. Finally, the classification is performed by the two different support vector machine classifiers. The experimental results on a large remote sensing image data- base with 2100 images show that the overall classification accuracy is boosted by 10% in comparison with the highest accuracy of single feature. Compared with other methods of multiple features fusion, the proposed method has achieved the highest classification accuracy which has reached 90.1%, and the time complexity of the algorithm is also greatly reduced.
出处 《计算机与现代化》 2016年第5期1-6,共6页 Computer and Modernization
基金 国家自然科学基金资助项目(61170200) 江苏省重点研发计划(社会发展)项目(BE2015707)
关键词 高分辨率遥感图像 颜色直方图 纹理特征 ScSPM 多特征融合 remote sensing image color histogram Gabor texture feature ScSPM multi-feature fusion
  • 相关文献

参考文献21

  • 1秦昆,陈一祥,甘顺子,冯霞,任文力.高分辨率遥感影像空间结构特征建模方法综述[J].中国图象图形学报,2013,18(9):1055-1064. 被引量:10
  • 2张锦水,何春阳,潘耀忠,李京.基于SVM的多源信息复合的高空间分辨率遥感数据分类研究[J].遥感学报,2006,10(1):49-57. 被引量:131
  • 3Swain M J, Ballard D H. Color indexing[ J]. International Journal of Computer Vision, 1991,7(1) :11-32. 被引量:1
  • 4Lee T S. Image representation using 2D gabor wavelets[J ]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 1996,18(10) :1-13. 被引量:1
  • 5Csurka G, Dance C R, Fan L, et al. Visual categorization with bags of keypoints [ C ]// Proceedings of Workshop on Statistical Learning in Computer Vision. Springer, 2004 : 1 - 22. 被引量:1
  • 6Lazebnik S, Schmid C, Ponce J. Beyond bags of features : Spatial pyramid matching for recognizing natural scene cate- gories[ C ]// Computer Vision and Pattern Recognition. IEEE Computer Society, 2006:2169-2178. 被引量:1
  • 7Yang Jianchao, Yu Kai, Gong Yihong, et al. Linear spa- tial pyramid matchingusing sparse coding for image classifi- cation[ C ]// Proceedings of the 22nd IEEE International Conference on Computer Vision and Pattern Recognition. 2009 : 1794 - 1801. 被引量:1
  • 8Ji Rongrong, Yao Hongxun, Liu Wei, et al. Task-depend- ent visual-codebook compression [ J ]. IEEE Transactions on Image Processing, 2012,21 (4) :2282-2293. 被引量:1
  • 9Bolovinou A, Pratikakis I, Perantonis S. Bag of spatio-vis- ual words for context inference in scene classification [ J ]. Pattern Recognition, 2013,46 ( 3 ) : 1039-1053. 被引量:1
  • 10张春霞,张讲社.选择性集成学习算法综述[J].计算机学报,2011,34(8):1399-1410. 被引量:139

二级参考文献124

共引文献342

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部