摘要
Pierece证明了对于任意一个具有最小元0的分配格L,存在一个格态f:L→L满足:(1)Kerf=0;(2)f(a)=f(b)当且仅当a⊥=b⊥,这里a,b∈L,且对于x∈L,x⊥={y∈L:y∧x=0}。我们称这样的格同态为Pierece同态。本文我们将证明:如果G是一个Archimedeanl-群,则G+只有唯一的Pierece同态。
Pierece proved that,for any distributive lattice L with a minimal element 0,there exists a Pierece's homomorphism f:L→L such that Kerf=0 and f(a)=f(b) in and only if a⊥=b⊥,where a,b∈L and for x∈L,x⊥={y∈L:y∧x=0}.In this note,we discusses the uniqueness of distributive lattice L for Pierece's homomorphism,and prove that if G is an archimedean l-group,then G+ has only one Pierece's homomorphism.
出处
《南昌大学学报(理科版)》
CAS
北大核心
2010年第3期230-231,共2页
Journal of Nanchang University(Natural Science)
基金
江西省自然科学基金资助项目(No.0611042)