摘要
F是代数闭域,V、W是F上的有限维线性空间,L(V,W)是V到W的所有线性变换组成的集合对线性变换的加法及数乘运算构成的线性空间.T是L(V,W)上的一个线性变换,若对任意f∈L(V,W),恒有KerT(f)=Kerf,则称T是保持核的线性变换,若对任意的f∈L(V,W),恒有Imf=ImT(f),则称T是保持象的线性变换。本文刻划了保持核和保持象的线性变换的形式.
F is the algebraically closed field , V and W are finite dimensional linear spaces on F , L( V, W) is space of linear transformations of V into W. T is a transformation on L(V,W) , iff ∈L(V,W), then Kerf = KerT(f) ,called the T is linear transformation preservered kerner subspace . iff ∈ L( V, W), then Imf = ImT(f) , called thd T is linear transforma- tion preservered image subspace . This paper , we characterize the forms of linear transformation on L( V, W)which preservers kernel subspace and preservers image subspace .
出处
《湖北师范学院学报(自然科学版)》
2008年第2期22-25,共4页
Journal of Hubei Normal University(Natural Science)
基金
湖北师范学院教研基金资助项目(2006007)
国家973课题资助
关键词
保核变换
保象变换
秩保持变换
秩k保持变换
linear transformation of preservered kernel
linear transformation of preservered image
linear transformation of preservered rank
linear transformation of preservered rank k