摘要
设A为Banach空间中一标准算子代数,证明了A到B(X)的每一广义导子都是广义内导子,进而,如果线性映射δ:A→B(X)满足δ(P)=δ(P)P+Pδ(P)-Pδ(I)P,P∈A为幂等元,则δ为广义导子.特别地。
Let A be a standard operator algebra in Banach space X , it is proved that every generalized derivation of A into B(X) is a generalized inner derivation. Furthermore, if linear mapping δ :A→ B(X) satisfying δ(P)=δ(P)P+Pδ(P)-Pδ(I)P for each idempotent P ∈A, then δ is a generalized derivation. In particular, every local generalized derivation of A is a generalized derivation.
出处
《曲阜师范大学学报(自然科学版)》
CAS
1999年第2期33-36,共4页
Journal of Qufu Normal University(Natural Science)
基金
烟台师范学院青年科学基金
关键词
标准算子代数
广义导子
局部广义导子
算子代数
standard operator algebra
generalized derivation
local generalized derivation
generalized inner derivation