期刊文献+

差商公式中间值的渐近性质 被引量:2

Asymptotic property of mean value for the formula of difference quotient.
下载PDF
导出
摘要 建立了关于两个函数差商与其导数之间的关系式,讨论了等距节点差商公式中间值的渐近性质. The relationships between difference quotient and derirative for two functions are obtained and the asymptotic properties of mean value in these relationships in case of equidistance knots are discussed.
作者 胡晶地
出处 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2010年第4期388-390,共3页 Journal of Zhejiang University(Science Edition)
关键词 差商 导数 中间值 TAYLOR公式 渐近性质 difference quotient derivative mean value Taylor expansion asymptotic properties
  • 相关文献

参考文献3

二级参考文献2

  • 1常庚哲 史济怀.数学分析教程[M].江苏教育出版社,1998.. 被引量:4
  • 2Stoer J, Bulirsch R. Introduction to Numerical Analysis[M]. Springer-Verlag, New York, 1993. 被引量:1

共引文献7

同被引文献32

  • 1张海燕,李欣,田书峰.基于BP神经网络的仿真线设计及其FPGA实现[J].电子与信息学报,2007,29(5):1267-1270. 被引量:13
  • 2CHEN J, SHIBATA T. Neuron-MOS-based VLSI imple- mentation of pulse-coupled neural networks for image feature generation [ J]. IEEE Transactions on Circuits and Systems-I, 2010, 57(6) : 1143-1153. 被引量:1
  • 3GATET L, BETEILLE H. Measurement range increase of a phase-shift laser rangefinder using a CMOS analog neural network [ J 1. IEEE Transactions on Instrumenta- tion and Measurement, 2009, 58 (6) : 1911-19 l 8. 被引量:1
  • 4JANOS B, PETER F. Novel calculation of fuzzy expo- nent in the sigmoid functions for fuzzy neural networks [ J]. Neurocomputing, 2014, 129(10) : 458-466. 被引量:1
  • 5MISRA J, SAHA I. Artificial neural networks in hard- ware: a survey of two decades of progress [ J ]. Neuro- computing, 2010(74) : 239-255. 被引量:1
  • 6BAJGER M, OMONDI A. Low-error, high-speed ap-proximation of the sigmoid function for large FPGA im- plementations [ J ]. Journal of Signal Processing Sys- tems, 2008, 52(2) : 137-151. 被引量:1
  • 7ASHKAN H N, KARL L, ROBERTO M, et al. Effi- cient hardware implementation of the hyperbolic tangent sigmoid function[C]. IEEE International Symposium on Circuits and Systems, Taipei, 2009 : 2117v2120. 被引量:1
  • 8CAMPO I, FINKER R, ECHANOBE J, et al. Con- trolled accuracy approximation of sigmoid function for efficient FPGA-based implementation of artificial neu- rons [ J]. Electronics Letters, 2013, 49 ( 25 ) : 1598-1600. 被引量:1
  • 9CHENG C J, LINK J,CHEN J, et al. CMOS current- mode hyperbolic tangent sigmoid function implementa- tion using multi-segment approximations [ C ]. 2012 IEEE international conference on cyber technology in automa- tion, control and intelligent systems, Bangkok, Thai- land, 2012: 60-64. 被引量:1
  • 10CYRIL P, PINJARE S L. Design and analog VLSI im- plementation of neural network architecture for signal processing [ J ]. European Journal of Scientific Re- search, 2009, 27(2): 199-216. 被引量:1

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部