期刊文献+

基于改进PCNN和互信息熵的自动图像分割 被引量:15

Automated Image Segmentation Based on Modified PCNN and Mutual Information Entropy
下载PDF
导出
摘要 脉冲耦合神经网络(PCNN)由于其良好的脉冲传播特性在图像分割中得到了广泛应用。针对其需要人机交互通过实验确定其相关参数等问题,改进PCNN模型,以像素对比度作为链接矩阵,以互信息作为迭代终止的判决依据,提出基于改进脉冲耦合神经网络的自动图像分割。实验结果表明,该方法实时性好、自适应性强,分割出的目标轮廓清楚。 For its good property of pulse burst,Pulse Coupled Neural Network(PCNN) is widely used in image segmentation.However,there are such problems in the method as its parameters are decided by experiment,so use the contrast of pixels as model’s link matrix,and use image mutual information entropy as the criterion to terminate iteration to modify standard model.This paper proposes an automated image segmentation based on modified PCNN.Experimental results show that the method is adaptive,its real time ability is good,and target contour is more clear.
出处 《计算机工程》 CAS CSCD 北大核心 2010年第13期199-200,204,共3页 Computer Engineering
基金 国家教育部重点科学技术基金资助项目(204143) 甘肃省科技攻关基金资助项目(2GS035-A052-011)
关键词 脉冲耦合神经网络 图像分割 图像互信息熵 Pulse Coupled Neural Network(PCNN) image segmentation image mutual information entropy
  • 相关文献

参考文献6

  • 1Eckhorn R,Reithoeck H J,Arndtetal M.Feature Linking via Synchronization Among Distributed Assemblies:Simulation of Results from Cat Cortex[J].Neural Computation,1990,2(3):293-307. 被引量:1
  • 2Kuntimad G,Ranganath H S.Perfect Image Segmentation Using Pulse Coupled Neural Networks[J].IEEE Transactions on Neural Networks,1999,10(3):591-598. 被引量:1
  • 3Ranganath H S,Kuntimad G.Object Detection Using Pulse Coupled Neural Networks[J].IEEE Transactions on Neural Networks,1999,10(3):615-620. 被引量:1
  • 4Skourikhine A N.Pulse Couple Neural Network for Image Smoothing and Segmentation[C] //proc.of International Symposium on Computational Intelligence.Kosice,Slovakia:[s.n.] ,2000. 被引量:1
  • 5马义德,戴若兰,李廉.一种基于脉冲耦合神经网络和图像熵的自动图像分割方法[J].通信学报,2002,23(1):46-51. 被引量:145
  • 6Liu Qing,Ma Yide,Qian Zhibo.Automated Image Segmentation Using Improved PCNN Model Based on Cross-entropy[J].Journal of Image and Graphics,2005,10(5):579-584. 被引量:1

二级参考文献1

共引文献144

同被引文献139

引证文献15

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部