期刊文献+

测量信息的计算 被引量:2

Calculation of Measurement Information
下载PDF
导出
摘要 确定性可以是被测量的客观随机变化性 ,也可以是对被测量的一种主观不确定性。先验不确定性根据测量者的先验知识或最大熵原理来计算。损失熵反映了测量仪器和过程的特性。先验不确定和损失熵可以采用连续熵形式或离散熵形式来计算 ,而且依据一定的方法 ,连续熵形式和离散熵形式可以相互转化。 2个例子显示了测量信息的计算方法。 The measurement is a process to capture information, and measurement information can be quantified by the amount of uncertainty reduced from the measurement action. The measurement information can be formalized by interactive information entropy which is equal to prior uncertainty subtracting losing entropy. Prior uncertainty is objective uncertainty or subjective uncertainty for the measured value before measurement, and can be calculated according to prior knowledge or principle of maximum of entropy. Losing entropy reflects the properties of measurement instruments and process. Both prior uncertainty and losing entropy can be calculated through the form of discrete entropy or continuous entropy. The process to calculate measurement information is demonstrated by two examples.
出处 《电子测量与仪器学报》 CSCD 2005年第2期26-28,共3页 Journal of Electronic Measurement and Instrumentation
  • 相关文献

参考文献8

二级参考文献5

共引文献7

同被引文献14

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部