期刊文献+

方向关系矩阵的复合 被引量:4

Composition of direction relation matrix
下载PDF
导出
摘要 采用方向关系矩阵模型表示空间区域最小边界矩形(MBR)间的关系,形式化描述了Skiadopoulos等提出的方向关系复合思想,并对其进行细化,提出方向关系矩阵复合方法,使方向关系复合易于实现;简化了Most运算,使复合过程更加简洁;通过定义取极小和取极大算子,实现了Most算法,为复合算法的提出奠定了基础;定义求幂运算符,实现了复合算法Com-pose并证明了算法的正确性,Compose算法的实现使方向关系复合从理论向应用更进一步。 In this work,the direction relation matrix is used to describe the relations between the Minimum Bounding Rectangles ( MBR ) of spatial regions. The composition of direction relations proposed by Skiadopoulos is formally described and refined. Then a composition method of direction relation matrix is proposed,which is easier to be realized. The proposed method simplifies the operation ‘Most’,making the process of composition more concise. By defining the minimum and maximal operators,the algorithm‘Most’ is realized,which provides the basis of the algorithm of composition. By defining the operator of power,the algorithm ‘Compose’ is realized and verified. The realization of the algorithm ‘Compose’ makes the composition easier for application.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2010年第4期1048-1053,共6页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(60603030 60773099 60873149 60973088) '863'国家高技术研究发展计划项目(2006AA10Z245 2006AA10A309) 欧盟项目(BridgingtheGap 155776-EM-1-2009-1-IT-ERAMUNDUS-ECW-L12)
关键词 人工智能 方向关系矩阵 方向关系复合 Compose算法 artificial intelligence direction relation matrix composition of direction relations algorithm of Compose
  • 相关文献

参考文献8

  • 1欧阳继红,欧阳丹彤,刘大有.基于模糊集及RCC理论的区域移动模型[J].吉林大学学报(工学版),2007,37(3):591-594. 被引量:5
  • 2Skiadopoulos S, Koubarakis M. On the consistency of cardinal direction constraints[J]. Artificial Intelligence,2005,163(1) : 91-135. 被引量:1
  • 3欧阳继红,马宝超,刘大有,富倩,李昂.空间线面拓扑关系的推理[J].吉林大学学报(理学版),2007,45(4):567-571. 被引量:3
  • 4Ligozat G. Reasoning about cardinal directions[J]. Journal of Visual Language and Computing, 1998,9 (1):23-44. 被引量:1
  • 5Goyal R, Egenhofer M J. Cardinal directions between extended spatial objects[DB/OL]. [2008-05- 16]. http://www. spatial.maine.edu/-max/directionMatrix.pdf. 被引量:1
  • 6Skiadopoulos S,Koubarakis M. Composing cardinal direction relations[J]. Artificial Intelligence, 2004, 152(2) : 143-171. 被引量:1
  • 7Papadias D, Sellis T. Qualitative representation of spatial knowledge in two dimensional space [J]. VIDB Journal, 1994, 3(4): 479-516. 被引量:1
  • 8Goyal R,Egenhofer M J. The direction-relation matrix:a representation for directions relations between extended spatial objects[C]//The Annual Assembly and the Summer Retreat of University Consortium for Geographic Information Systems Science, 1997. 被引量:1

二级参考文献17

  • 1欧阳继红,刘大有,胡鹤,陈博宇.一种基于模糊集的混合空间推理方法[J].吉林大学学报(理学版),2004,42(4):565-569. 被引量:7
  • 2虞强源,刘大有,欧阳继红.基于区间值模糊集的模糊区域拓扑关系模型[J].电子学报,2005,33(1):186-189. 被引量:13
  • 3欧阳继红,刘亚彬,刘大有,等.空间推理及其研究现状[C]//第六届中国人工智能联合学术会议论文集.北京:清华大学出版社,2001. 被引量:1
  • 4Li San-jiang,Ying Ming-sheng.Region connection calculus:its models and composition table[J].Artificial Intelligence,2003,145:121-146. 被引量:1
  • 5Randell D A,Cohn A G.Modeling topological and metrical properties in physical processes[C] // In:Proc 1st Int Conf on the Principles of Knowledge Representation and Reasoning.Morgan Kaufmann,Los Altos,1989:55-66. 被引量:1
  • 6Randell D A,Cui Z,Cohn A G.A spatial logic based on regions and connection[C]//In:Proc 3rd Int Conf on Knowledge Representation and Reasoning.Morgan Kaufmann,Sanmateo,1992:165-176. 被引量:1
  • 7Egenhofer M J,Franzosa R.Point-set topological spatial relations[J].Int J of Geographical Information Systems,1991,5 (2):161-174. 被引量:1
  • 8Needham C,Santos P,Magee D R,et al.Protocols from perceptual observations[J].Artificial Intelligence,2005,167(1/2):103-136. 被引量:1
  • 9Renz J.A spatial odyssey of the interval algebra:1.directed intervals[C] // In Proc IJCAI-01,2001:51-56. 被引量:1
  • 10Zadeh L A.Fuzzy sets[J].Information and Control,1965,8(3):338-353. 被引量:1

共引文献6

同被引文献74

  • 1江坤,王中辉.锥形模型的面群方向关系相似性度量方法[J].测绘科学,2022,47(6):174-180. 被引量:2
  • 2吴静,程朋根,陈斐,毛建华.空间目标的方向关系定性推理[J].测绘学报,2006,35(2):160-165. 被引量:13
  • 3Tobler W. Global spatial analysis[J]. Computers, Environment, and Urban Systems, 2002, 26: 493- 500. 被引量:1
  • 4Egenhofer M J. Spherical topological relations[J]. Journal on Data Semantics III, 2005,2 : 25-49. 被引量:1
  • 5Clernentini Eliseoc, Billen Roland. Modeling and computing ternary projective relations between re- gions[J]. IEEE Transactions on Knowledge and Data Engineering, 2006, 18(6) :799-814. 被引量:1
  • 6Clementini Eliseo, Skiadopoulos Spiros, Roland Billen, et al. A reasoning system of ternary projec- tive relations[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(2):161 -178. 被引量:1
  • 7Clementini Eliseo. Projective relations on the sphere [C]//Proc Second Int'l Workshop Semantic and Conceptual Issues in GIS(SeCoGIS'08). Berlin Hei- delberg: Springer-Verlag, 2008. 被引量:1
  • 8Ma L, Li H, Lian S, et al. Expression and application of geo- spatial relation ontology [C] //Geoinformatics, 21st Interna- tional Conference on IEEE, 2013: 1-5. 被引量:1
  • 9Mossakowski T, Moratz R. Qualitative reasoning about rela- tive direction of oriented points [J]. Artificial Intelligence, 2012, 180: 34-45. 被引量:1
  • 10Tang Xuehua, Qin Kun. Direction-relation similarity model based on fuzzy close-degree [C] //Proceedings of the IEEE International Conference on Prc:tess in Informafies and Computing, 2010. 被引量:1

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部