期刊文献+

空间线面拓扑关系的推理 被引量:3

Reasoning of Topological Relations between Spatial Line and Region
下载PDF
导出
摘要 基于Egenhofer的19种线面拓扑关系,提出OR算法并证明了OR算法的正确性,使用OR算法可求解复合线段与同一区域的拓扑关系矩阵.利用OR算法在19种拓扑关系中找到5种具有相互独立关系的集合SM,证明了集合SM是表达19种线面拓扑关系的元数最小集,集合SM有助于推导复杂的线面拓扑关系,使线面拓扑关系的表达更加简洁.为进一步研究线面拓扑关系的推理,给出了从SM推导出其他拓扑关系的推导图. Based on Egenhofer's nineteen relations between line and region, algorithm OR was presented and verified. Via algorithm OR, the topological relation matrix between a composite line and a region can be derived. Five mutually exclusive relations, denoted by SM, were distinguished from the original nineteen relations by means of algorithm OR. It was proved that SM was the minimal set of basic relations to express the nineteen relations. SM is useful for reasoning complex relations between line and region, and makes it more concise to represent the topological relations between line and region. In order to further study the reasoning of the topological relations between line and region, the derivation graph for deriving other relations from SM was given.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2007年第4期567-571,共5页 Journal of Jilin University:Science Edition
基金 国家自然科学基金重大项目基金(批准号:60496321) 国家自然科学基金(批准号:60573073) 国家863高技术研究发展计划项目基金(批准号:2006AA10Z2452006AA10A309) 吉林省科技发展计划重大项目基金(批准号:20020303) 吉林省科技发展计划项目基金(批准号:20030523)和欧盟项目(批准号:TH/AsiaLink/010(111084))
关键词 拓扑关系 线段 区域 OR算法 topological relation line region OR algorithm
  • 相关文献

参考文献8

二级参考文献19

  • 1许卓群 张乃孝.数据结构[M].北京:高等教育出版社,1981.. 被引量:2
  • 2Zhan F B. Approximate analysis of binary topological relations between geographic regions with indeterminate boundaries[J]. Soft Computing,1998,2(2):28 - 34. 被引量:1
  • 3Schneider M. Finite Resolution Crisp and Fuzzy Spatial Objects. In:Forer P ,Yeh A G O ,He J (eds). Proceedings of 9th International Symposium on Spatial Data Handling. Beijing: International Geographical Union,5a,2000.3 - 17. 被引量:1
  • 4Altmann D Fuzzy set theoretic approaches for handling imprecision in spatial analysis [J]. International Journal of Geographical Information Systems, 1994,8(3) :271 - 289. 被引量:1
  • 5Ai Tinghua. A topological relation description for spatial objects with uncertainty boundaries[A] .In: Li Deren, Gong Jianya, Chen Xiaoling (eds). Spatial Information Science, Technology and its Application[ C ]. Wuhan, China: Wuhan Technical University of Stirveying and Mapping Press, 1998. 394 - 398. 被引量:1
  • 6Molenaar M, Cheng T. Fuzzy spatial objects and their dynamics. ISPRS Journal of photogrammetry & Remote sensing,2000,55(3):164 - 175. 被引量:1
  • 7刘迎春,硕士学位论文,1999年 被引量:1
  • 8王朝瑞,图论(第2版),1997年 被引量:1
  • 9许卓群,数据结构,1981年 被引量:1
  • 10Cohn A G, Hazarika S M. Qualitative spatial representation and reasoning: an overview [J]. Fundamenta Informaticae, 2001, 45: 1-29. 被引量:2

共引文献203

同被引文献26

  • 1郭庆胜,陈宇箭,刘浩.线与面的空间拓扑关系组合推理[J].武汉大学学报(信息科学版),2005,30(6):529-532. 被引量:14
  • 2欧阳继红,欧阳丹彤,刘大有.基于模糊集及RCC理论的区域移动模型[J].吉林大学学报(工学版),2007,37(3):591-594. 被引量:5
  • 3Cohn A G,Hazarika S M. Qualitative spatial representation and reasoning: an overview[J]. Fundamental Informatics,2001,46 (1/2):1-29. 被引量:1
  • 4Eserig M Teresa, Toledo Francisco. Qualitative Spatial Reasoning: Theory and Practice[M]. The Netherlands : IOS Press, 1999. 被引量:1
  • 5Randell D, Cui Z, Cohn A. A spatial logic based on regions and connection[C] // In Proceedings of the 3rd International Conference on Knowledge Representation and Reasoning, Morgan Kaufmann, 1992. 被引量:1
  • 6Kurata Y, Egenhofer M. Structure and semantics of arrow diagrams[C]//COSIT '05, Ellicottville, NY, 2005. 被引量:1
  • 7Kurata Y, Egenhofer M. arrow symbols in complex Topological relations of diagrams[C]//Fourth International Conference on the Theory and Application of Diagrams, Stanford, CA,2006. 被引量:1
  • 8Clementini E, di Felice P, van Oosterom P. A small set of formal topological relationships suitable for end-user interaction[C] // Third International Symposium, SSD'93, Singapore,1993. 被引量:1
  • 9Egenhofer M. Definitions of line-line relations for geographic databases [J]. IEEE Data Engineering Bulletin, 1994,16(3) :40-45. 被引量:1
  • 10Egenhofer M, Franzosa R. On the equivalence of topological relations[J]. International Journal of Geographical Information Systems, 1995, 9 (2): 133-152. 被引量:1

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部