期刊文献+

整数线性规划的切割与分支算法 被引量:4

Cut and branch algorithm of general integer linear programming problems
下载PDF
导出
摘要 基于整数线性规划问题的分支定界方法,以子问题或根问题的目标最优值作为参数,构造了一种新的切割不等式,能够方便地切割子问题或根问题的非整数最优解。在分支之前进行这种切割,产生了一种新的求解整数线性规划问题的切割与分支算法。将该算法应用于求解一些经典的数值例子,实验结果表明,与经典的分支定界方法相比,该算法大大减少了分支的数量,提高了计算效率。随着问题规模的增大,该算法的计算优越性体现得更加明显。 On the basis of the classical branch-and-bound principle,a new cutting inequality with the optimum value of a child or root problem as a parameter is constructed.So,the optimal non-integer solution of the child or root problem can be conveniently cut off by the associated cutting plane with the cutting inequality.Performing the cutting before the branching,a new cutting and branch algorithm for general integer linear programming problems is presented.The computational test on some classical numerical examples show that,compared with the classical branch-and-bound principle,the algorithm greatly decreases the number of the branches,improves the com-putational efficiency.With the increase of the problem size,the superiority of the algorithm is remarkable.
作者 高培旺
出处 《计算机工程与设计》 CSCD 北大核心 2010年第12期2930-2932,共3页 Computer Engineering and Design
基金 广西自然科学基金项目(桂科自0728260)
关键词 线性规划 整数规划 目标最优值 切割 分支定界算法 linear programming integer programming optimum value cutting branch-and-bound algorithm
  • 相关文献

参考文献9

  • 1Kahng A B,Liu B,Mendoiu I.Non-tree routing for reliability and yield improvement[J].IEEE Transactions on Computer-Aided Design of Integrated Circuit and Systems,2004,23(1):148-156. 被引量:1
  • 2Patel K N,Hayes J P,Markov I L.Fault testing for reversible circnits[J].IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,2004,23(8):1220-1230. 被引量:1
  • 3Barhamgi M,Benslimane D.PWSMS:A peer-to-peer web service management system for data sharing in collaborative environments[J].Computer Systems Science and Engineering,2008,23(2):89-106. 被引量:1
  • 4张干宗.线性规划[M].2版.武汉:武汉大学出版社,2007:235-291. 被引量:1
  • 5Eckstein J,Nediak M.Depth optimized convexity cuts[J].Annals of Operations Research,2005,139(1):95-129. 被引量:1
  • 6Achterberg T,Koch T,Martin A.Branching rules revisited[J].Operations Research Letters,2005,33(1):42-54. 被引量:1
  • 7Elhedhli S,Goffin J L.The integration of an interior-point cutting plane method with a branch-and price algorithm[J].Mathematical Programming,2004,100(2):267-294. 被引量:1
  • 8Letchford A N.Binary clutter inequalities for integer programs[J].Mathematical Programming,2003,98(1-3):201-221. 被引量:1
  • 9Thompson G L.The stopped simplex method:Basic theory for mixed integer programming[J].Revue Francaise de Recherche Oprationnelle,1964,31 (8):159-182. 被引量:1

同被引文献26

  • 1谭瑛,高慧敏,曾建潮.求解整数规划问题的微粒群算法[J].系统工程理论与实践,2004,24(5):126-129. 被引量:43
  • 2高岳林,尚有林,张连生.解带有二次约束非凸二次规划问题的一个分枝缩减方法(英文)[J].运筹学学报,2005,9(2):9-20. 被引量:10
  • 3黄红选,梁治安.全局优化引论[M].北京:清华大学出版社,2003. 被引量:7
  • 4刁在筠,刘桂真,宿洁,等.运筹学[M].3版.北京:高等教育出版社,2007. 被引量:12
  • 5郭志军.分支定界算法的MATLAB实现[J].江西教育学院学报,2007,28(6):4-7. 被引量:5
  • 6NOWAK I, VIGERSKE S. LaGO.. a (heuristic) branch and cut algorithm for nonconvex MINLPs EJ~. Central European Journal of Operations Re- search, 2008,16(2) : 127-138. 被引量:1
  • 7WESTRLUND T, SKRIFVARS H, HARJUNKOS- KI I, et al. An extended cutting plane method for solving a class of non-convex minlp problems['J-]. Computers and Chemical Engineering, 1998,22 ( 3 ) : 357-365. 被引量:1
  • 8WESTERLUND T, PETTERSSON F. A cutting plane method for solving convex minlp mproblems EJ~. Computers and Chemical Engineering, 1995,19 (1) ..t31-136. 被引量:1
  • 9WESTERLUND T, PC)RN R. Solving pseudo-con- vex mixed integer problems by cutting plane tech- niques[-Jl. Optimization and Engineering, 2002, 3 (3) :253-280. 被引量:1
  • 10PORN R, WESTERLUND T. A cutting plane meth- od for minimizing pseudo-convex functions in the mixed-integer caseEJ~. Computers and Chemical En- gineering, 2000,24 (12) : 2655-2665. 被引量:1

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部