期刊文献+

基于偏振光谱BRDF图像的物质分类 被引量:8

Materials Classification Based on Spectropolarimetric BRDF Imagery
下载PDF
导出
摘要 提出一种基于偏振光谱二向反射分布函数图像的物质自动分类方法,该方法主要选择偏振光谱二向反射分布函数信息作为新的特征用于物质自动分类.采用支撑向量机的分类方法对不同的天气条件(晴天、多云、阴天)下处于杂乱的自然草地背景环境中的典型目标进行分类,最后比较三种不同特征选择对于分类准确度的影响.采取三种不同的特征选取方法,分别为采用单一的光谱特征、偏振光谱特征及偏振光谱二向反射分布函数特征.最后通过实验得出:将偏振光谱二向反射分布函数作为分类特征在三种不同的天气情况下,分类准确度都较高,特别是在阴天天气条件下,分类准确度明显高于其它两种特征选择.即使是在阴天低照度下的场景中,当不同目标和背景之间的灰度很接近时,采用本文方法也能准确的进行自动分类. A new classify method based on spectropolarimetric BRDF imagery is proposed. The performances of three different selected features in classifyication results under various weather conditions including sunny sky, cloudy, and dark sky are emphasized. The three selected features are material spectral information, spectropolarimetric information, and spectropolarimetric BRDF information respectively. Support Vector Machine method is used to classify targets in clutter grass environments, then the classify results based on spectropolarimetric BRDF features three different weather conditions respectively. are compared with the other two features under the The results show that the method based on spectropolarimetric BRDF features performs the best among the three, no matter what the weather conditions are, and its advantage shows most evidently especially in the dark sky. Selecting the spectropolarimetric BRDF information as features in the materials classification will enhance the precision at most time,even in the case when the gray values between backgrounds and targets are very near.
出处 《光子学报》 EI CAS CSCD 北大核心 2010年第6期1026-1033,共8页 Acta Photonica Sinica
基金 国家自然科学基金(60602056) 国家自然科学基金重点资助项目(60634030) 高等学校博士学科点专项科研基金(20060699032) 航空科学基金(2007ZC53037) 西北工业大学英才计划基金资助
关键词 偏振光谱 二向反射分布函数 物质分类 特征选择 支撑矢量机 Spect ropolarimet ric BRDF Material classification Feature selection SVM
  • 相关文献

参考文献13

二级参考文献71

共引文献93

同被引文献138

  • 1茹志兵,刘冰,李双全,张晓亮,邹程帅,张奇贤.基于微光像增强器的偏振成像系统设计与实验[J].应用光学,2015,36(3):435-441. 被引量:6
  • 2黄沛杰,王文成,杨刚,吴恩华.基于中介面加快光线跟踪计算[J].计算机学报,2007,30(2):262-271. 被引量:4
  • 3赵永强,潘泉,张洪才.自适应多波段偏振图像融合研究[J].光子学报,2007,36(7):1356-1359. 被引量:9
  • 4GEORGIEV G, GATEBE C K, BUTLER J, et al. BRDF analysis of savanna vegetation and salt-pan samples [J]. IEEE Transactions on Geoscienee and Remote Sensing, 2009, 47(8), 2546-2556. 被引量:1
  • 5DUNCAN D D, HAHN D V, THOMAS M E. Physics based polarimetric BRDF models[C]. SPIE, 2003, 5192: 129-140. 被引量:1
  • 6SUKENS J A K. VANDEWALI.E J. I.east squares support vector machine classifiers [ J]. Neural Pracessing Letters, 1999, 9(3): 293-300. 被引量:1
  • 7SAUNDERS C, GAMMERMAN A, VOVK V. Ridge regression learning algorithm in dual variables[C]. Proc. of the 15th Int. Cont on Machine Learning ICML 98, Madison-Wisconsin, 1998. 被引量:1
  • 8ESPINOZA M, SUYKENS J, De MOOR B. Imposing symmetry in least squares support vector machines regression [C]. Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 2005. 被引量:1
  • 9VALYON J, HORVATH G. A robust LS-SVM regression world academy of science[J]. Engineerirzg atzd TechnoZogy, 2005, 7:148-153. 被引量:1
  • 10CUI Wen-tong, YAN Xue feng. Adaptive weighted least square support vector machine regression integrated with outlier detection and its application in QSAR [J ]. Chemometrics and Intelligent Laboratory Systems, 2009, 98 (2), 130-135. 被引量:1

引证文献8

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部