期刊文献+

基于六参量偏振BRDF模型的地物背景偏振反射特性研究 被引量:4

Polarized Reflectance Properties for Ground-Feature's Background Based on Six-Component pBRDF Model
原文传递
导出
摘要 为研究地物背景的偏振反射特性,综合考虑了镜面反射、体散射和后向散射,建立了一种六参量偏振双向反射分布函数(pBRDF)模型。该模型利用Kubelka-Munk(KM)理论模拟体散射分量,并引入呈高斯分布的后向散射分量,改进了传统的偏振BRDF模型。建立的六参量偏振BRDF模型更加符合地物背景的偏振反射特性。基于多角度偏振测量原理,获得草地和土壤在不同观测几何下的偏振光谱,分析了偏振反射分布特征,并从实测数据中反演了模型参量,将测量值与仿真值进行了对比。结果表明:所建立的六参量偏振BRDF模型的仿真结果与实测数据之间具有很好的吻合性,证实了该模型的准确性与有效性。 To represent the polarized reflectance properties of ground-feature's background,we present a sixcomponent polarized bidirectional reflectance distribution function(pBRDF)model that takes specular reflection,volume scattering and backscattering into account.The model uses the Kubelka-Munk(KM)theory to simulate the volume scattering component,and introduces a backscattering component of Gaussian distribution,which improves the traditional pBRDF model,and makes the new six-component pBRDF model more suitable to the polarized reflectance properties of ground-feature's background.The polarized spectra of grass and soil under the different observation geometries are obtained based on the theory of multi-angular polarization detection.The variation of the polarized spectral reflectance is also analyzed.The simulated polarization values from the six-component model are compared with the measured data.It is shown that a good agreement is obtained between polarization measurement data and simulated results.The accuracy and validity of model are confirmed.
作者 杨敏 方勇华 吴军 崔方晓 Yang Min;Fang Yonghua;Wu Jun;Cui Fangxiao(School of Environment Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui 230036, China;Key Laboratory of Optical Calibration and Characterization, Anhui Institute of Optics and Fine Mechanics, Chinese AcademyofScience, Hefei, Anhui 230031, China)
出处 《光学学报》 EI CAS CSCD 北大核心 2018年第5期265-272,共8页 Acta Optica Sinica
基金 国家自然科学基金青年基金(41505020)
关键词 物理光学 偏振 后向散射 双向反射分布函数 地物背景 physical optics polarization backscattering bidirectional reflectance distribution function groundfeature' s background
  • 相关文献

参考文献7

二级参考文献39

  • 1新几何光学核的验证以及用核驱动模型反演地表反照率(之一)[J].遥感学报,2000,4(z1):1-7. 被引量:10
  • 2宋芳妮,范闻捷,刘强,徐希孺.一种获取野外实测目标物BRDF的方法[J].遥感学报,2007,11(3):296-302. 被引量:9
  • 3赵永强,潘泉,张洪才.自适应多波段偏振图像融合研究[J].光子学报,2007,36(7):1356-1359. 被引量:9
  • 4GEORGIEV G, GATEBE C K, BUTLER J, et al. BRDF analysis of savanna vegetation and salt-pan samples [J]. IEEE Transactions on Geoscienee and Remote Sensing, 2009, 47(8), 2546-2556. 被引量:1
  • 5DUNCAN D D, HAHN D V, THOMAS M E. Physics based polarimetric BRDF models[C]. SPIE, 2003, 5192: 129-140. 被引量:1
  • 6SUKENS J A K. VANDEWALI.E J. I.east squares support vector machine classifiers [ J]. Neural Pracessing Letters, 1999, 9(3): 293-300. 被引量:1
  • 7SAUNDERS C, GAMMERMAN A, VOVK V. Ridge regression learning algorithm in dual variables[C]. Proc. of the 15th Int. Cont on Machine Learning ICML 98, Madison-Wisconsin, 1998. 被引量:1
  • 8ESPINOZA M, SUYKENS J, De MOOR B. Imposing symmetry in least squares support vector machines regression [C]. Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference 2005. 被引量:1
  • 9VALYON J, HORVATH G. A robust LS-SVM regression world academy of science[J]. Engineerirzg atzd TechnoZogy, 2005, 7:148-153. 被引量:1
  • 10CUI Wen-tong, YAN Xue feng. Adaptive weighted least square support vector machine regression integrated with outlier detection and its application in QSAR [J ]. Chemometrics and Intelligent Laboratory Systems, 2009, 98 (2), 130-135. 被引量:1

共引文献39

同被引文献26

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部