摘要
通过函数值的运算近似牛顿法中的导数项,构造了一个免导数的牛顿法.该算法与牛顿法一样,具有二阶收敛速度,但不需要用到函数的导数.通过与二分法结合,实现该算法的全局收敛性.数值结果表明该算法是有效的.
This paper first proposed a gradient-free method for nonlinear equation by approximating the derivative term in the Newton method.Like the Newton method,the algorithm is convergent two-order.Moreover,a globally convergent derivative-free method was presented by combining the above gradient-free method with the bisection method.Some numerical results show that the algorithm is effective.
出处
《怀化学院学报》
2010年第5期34-37,共4页
Journal of Huaihua University
关键词
非线性方程
免导数
区间二分法
二阶收敛
nonlinear equation
derivative-free
interval bisection method
square convergence