期刊文献+

修正并行式多传感器不敏多假设跟踪算法 被引量:1

Modified parallel multisensor unscented multiple hypothesis tracking algorithm
下载PDF
导出
摘要 为了有效解决非线性系统中的多传感器多目标跟踪问题,提出了一种修正并行式多传感器不敏多假设滤波算法。算法运用概率数据互联的思想对各传感器的估计量进行概率加权,克服了并行式多传感器算法的误差积累现象,得到了一种修正的多传感器并行式算法。各传感器中量测点迹与航迹的数据互联问题通过多假设方法予以解决,并通过不敏卡尔曼滤波器完成非线性系统中的目标跟踪。仿真结果表明,从跟踪精度及稳定性方面看,所提出的算法性能要优于MSJPDA/EKF算法。 For the problem of multisensor-multitarget tracking in nonlinear systems,a modified parallel implementation of multisensor unscented multiple hypothesis tracking algorithm(MPUMHT) is proposed.In the new algorithm,in order to solve the problem of error cumulation of the parallel multisensor algorithm,the estimation from each sensor is weighted according to the method of probabilistic data association first and a modified parallel multisensor algorithm is derived.Then a multiple hypothesis tracking method is used for the association of measurements to tracks.Finally,the problem of target tracking in nonlinear systems is implemented according to unscented Kalman filter(UKF),and the MPUMHT algorithm is derived.According to the simulation results,the accuracy and robustness of the proposed algorithm are improved compared with the multisensor joint probabilistic data association/extend Kalman filter(MSJPDA/EKF) algorithm.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2010年第6期1201-1205,共5页 Systems Engineering and Electronics
基金 国家自然科学基金(60672139)资助课题
关键词 非线性 多传感器多目标跟踪 不敏多假设跟踪 并行式处理 nonlinearity multisensor multitarget tracking unscented multiple hypothesis tracking parallel implementation
  • 相关文献

参考文献20

  • 1Bar-Shalom Y.Multitarget-multisensor tracking:advanced application[M].Boston:Artech House,1990. 被引量:1
  • 2何友等著..多传感器信息融合及应用[M].北京:电子工业出版社,2000:336.
  • 3潘泉,叶西宁,张洪才.广义概率数据关联算法[J].电子学报,2005,33(3):467-472. 被引量:29
  • 4Blackman S S.Multiple hypothesis tracking for multiple target tracking[J].IEEE Trans.on Aerospace and Electronic Systems Magazine,2004,19(1):5-18. 被引量:1
  • 5熊伟 ,张晶炜 ,何友 .修正的概率数据互联算法[J].海军航空工程学院学报,2004,19(3):309-311. 被引量:11
  • 6何友等编著..雷达数据处理及应用[M].北京:电子工业出版社,2006:267.
  • 7耿文东,刘红娅,王元钦,蔡庆宇.基于群目标的多目标关联算法研究[J].系统仿真学报,2007,19(15):3510-3512. 被引量:7
  • 8Pao L Y,Frei C W.A Comparison of parallel and sequential implementation of a multisensor muhitarget tracking algorithm[C] //Proc.of American Control Conference,1995:1683-1687. 被引量:1
  • 9O'Neil SD,Pao L Y.Multisensor fusion algorithm for tracking[C] //Proc.of American Control Conference,1993:859-863. 被引量:1
  • 10Bar-shalom Y.Multitarget multisensor tracking:principles and techniques[M].Stors.CT:YBS Publishing,1995. 被引量:1

二级参考文献45

  • 1沈宁,何友,王国宏.一种改进的精确最近邻PDA(IENNPDA)算法[J].现代雷达,1996,18(2):8-13. 被引量:6
  • 2牛君,李贻斌.一种基于BFGS拟牛顿公式的运动目标跟踪方法[J].系统仿真学报,2007,19(1):13-15. 被引量:2
  • 3何友 等.多传感器信息融合中的分层估计[J].海军航空工程学院学报,1999,(2):101-107. 被引量:7
  • 4[1]Bar-Shalom Y,Fortmann T E.Tracking and Data Assiociation[C].Academic Press,San Diego,CA,1988. 被引量:1
  • 5[2]Pao Lucy Y,Frei Christian W.A Comparison of Parallel and Sequential Implementations of a Multisensor Multitarget Tracking Algorithm[C].Proceeding of the American Control Conference,Seattle,Washingtan,1995. 被引量:1
  • 6[4]Hall David L.Mathematical Techniques in Multisensor Data Fusion[M].London,Artech House Boston,1992. 被引量:1
  • 7[5]Edward Waltz,James Llinas.Multisensor Data Fusion[M].London,Artech House Boston,1990. 被引量:1
  • 8[6]Ramachanfra K V.Kalman Filting Techniques for Radar Tracking[M].New York,Marcel Dekker,Inc.2000. 被引量:1
  • 9[2]Bar-shalom Y,Fortmann T E. Tracking and Data Association [M].New York:Academic press,1988 被引量:1
  • 10[4]Yaakov Bar-Shalom.Multitarget-Multisensor Tracking,Advanced Application[M].University of Connecticut,Artech House,1990:1-23 被引量:1

共引文献56

同被引文献15

  • 1李龙,李俊山,叶霞.基于Mean Shift算法的运动平台下红外目标跟踪[J].红外与激光工程,2007,36(2):229-232. 被引量:13
  • 2Vo B N, Ma W K. The Gausian mixture probability hypothesis density filter[J]. IEEE Trans. on Signal Processing, 2006,54 (11) :4091 -4104. 被引量:1
  • 3Goodman I R, Mahler R P S, Nguyen H T. Mathematicsofdata fusion[M]. DordRecht: Kluwer Academic Publishers, 1997. 被引量:1
  • 4朱洪艳,段战胜,韩崇昭.多源信息融合[M].2版.北京:清华大学出版社,2010. 被引量:1
  • 5Cheng Y Z. Mean shift mode seeking and clustering[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1995,17 (8):790- 799. 被引量:1
  • 6Han B, Davis L S. Probabilistic fusion based parameter estima- tion for visual traeking[J]. Computer Vision and Image Under- standing,2009,113(4):435- 445. 被引量:1
  • 7Georgescu B, Shimshoni I, Meer P. Mean shift based cluste- ring in high dimensions: a texture classification example[C]// Proc. of the IEEE International Conference on Computer Vision, 2003:456 - 463. 被引量:1
  • 8Comaniciu D, Ramesh V. Mean shift and optinal prediction for efficient object tracking[C]//Proc, of the IEEE International Conference on Image Processing, 2000:70 - 73. 被引量:1
  • 9Han B, Comaniciu D, Zhu Y, et al. Sequential kernel density approximation and its application to real-time visual tracking[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2008, 30(7) : 1186 - 1197. 被引量:1
  • 10Julier S J, Uhlmann J K. Unscented filtering and nonlinear estimation[J]. Proceedings of the IEEE,2004,92(3) ;401 - 422. 被引量:1

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部