期刊文献+

城市交叉口自学习模糊控制策略 被引量:8

Learning based fuzzy control strategy design for a signalized intersection
原文传递
导出
摘要 为了提高交叉口运行效率,提出了一种基于胞映射的交叉口自学习模糊控制策略。该方法首先以交叉口各方向排队长度为状态构成状态空间,并进一步将该空间划分为离散的模糊胞元;然后通过研究交叉口交通状态在状态空间内各胞元间的跳转关系,分析交叉口系统的动态特性;最后以此为基础制定模糊控制规则,设计模糊控制器以确定交叉口的绿信比,并引入自学习策略对控制效果进行评估和持续改进控制器性能。基于北京市地安门的实测交通数据的仿真结果表明:该方法与固定配时控制与感应控制相比较,能够明显地减少交叉口各方向的排队长度。 A learning-based fuzzy control strategy was developed using cell mapping to improve intersections' efficiency.Queue lengths of every direction at an intersection are regarded as traffic states to form the state space,which is further divided into discrete fuzzy cells.The transition patterns of traffic states transiting among the fuzzy cells are then used to analyze the intersection dynamic characters.Fuzzy control rules are derived based on the dynamic characters with fuzzy a controller designed to optimize the split at the intersection.Self-learning strategy is introduced to keep on improving the controller's performance.Simulations based on the data of the Di'anmen intersection in Beijing demonstrate that the strategy leads to a shorter queue length than the fixed-time and vehicle actuated methods.
出处 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第5期709-713,共5页 Journal of Tsinghua University(Science and Technology)
基金 国家"九七三"重点基础研究项目(2006CB705506) 国家"八六三"高技术项目(2007AA11Z215) 国家自然科学基金资助项目(60834001 60774034 60721003 50708055) 北京市科委博士生论文资助专项(ZZ0807)
关键词 交叉口控制 胞映射 模糊控制 自学习 交通状态空间 intersection control cell mapping fuzzy control self-learning traffic state space
  • 相关文献

参考文献9

二级参考文献18

  • 1郑英力,翟润平,马社强.交通流元胞自动机模型综述[J].公路交通科技,2006,23(1):110-115. 被引量:18
  • 2陈洪,陈森发.单路口交通实时模糊控制的一种方法[J].信息与控制,1997,26(3):227-233. 被引量:61
  • 3Pappis C P,Mamdani E H. A fuzzy logic controller for a traffic iunction. IEEE Trans on System, Man, and Cybernetics, 1977,7 : 707-717. 被引量:1
  • 4Hoyer R,Jumar U. An advanced fuzzy controller for traffic lights. IFAC Artificial Intelligence in Real Time Control ,Valencia ,Spain, 1994.67-72. 被引量:1
  • 5Mohamed B Trabia, Mohamed S Kaseko, Murali Ande. A two-stage fuzzy logic controller for traffic signals. Trans. Res. C, 1999,7:353-367. 被引量:1
  • 6Ella Bingham. Reinforcement learning in neurofuzzy traffic signal control, Euro. Jour. of Oper. Res. 2001,131:232-241. 被引量:1
  • 7Niittymaki J, Kikuchi S. Application of fuzzy logic to the control of a pedestrian crossing signal. Transportation Research Record No. 1651. Washington D.C. Transportation Research Board, 1998.30-38. 被引量:1
  • 8Niittymaki J,MaenpaaM. The role of fuzzy logic public transport priority in traffic signal control. Traf.Eng. and Cont. ,Inter. Jour. of Traf, Man. and Trans.Plan. 2001,42:22-26. 被引量:1
  • 9PAUL G, MICHAEL, FRANK C, et al.Dwyer.Headway on Urban Street: Observational Data and an Intervention to Decrease Tailgating [J].Transportation Research Part F, 2000, 3 (2): 54-64. 被引量:1
  • 10Roads and Traffic Authority of New South Wales. Traffic Signal Operation [M]. Australia: RTA-TC-106 Version 1.1, 2000. 被引量:1

共引文献39

同被引文献57

引证文献8

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部