期刊文献+

改进的多目标优化算法及其在船舶设计中的应用 被引量:5

An Improved Method of Multi-objective Optimization and its Application to Ship Design
下载PDF
导出
摘要 对多目标优化问题的固定加权和方法加以改进,采用随机权系数方法将多目标优化问题转换成为单目标优化问题,利用序列二次规划方法获得问题的最优解。由于权系数的随机性,多次运行能够得到多目标优化问题的Pareto优化解和Pareto前沿。和固定权系数相比,这种方法能够找到非凸均衡面上所有的Pareto最优解。采用TOPSIS法进行多属性决策(MADM)研究,对Pareto最优解给出排序。针对船舶概念设计阶段主尺度确定过程的多目标优化问题,给出了一艘散装货船两个优化目标的数值算例。计算结果表明,随机加权和方法可以求出多目标Pareto最优解集,和先验加权方法相比,随机加权方法能为设计者提供更多的选择;和遗传算法相比,现在的方法简便且精度良好。 An improved method of multi-objective optimization based on stochastic weighted sum is presented,and ship’s principal parameters design is studied,and multi-attribute decision making(MADM) is also studied.Sequential quadratic programming(SQP) and design of experiment(DOE) are used to solve the optimization problem.The Pareto solutions can be obtained by running this process a large number of times.A multi-attribute decision making(MADM) approach is adopted to rank these solutions from best to worst and to determinate the best solution in a deterministic environment with a single decision maker.Pareto solutions and frontier are given for a bulk carrier example,with six-parameter,three criterion and 14-constraint.The ranking of Pareto solution is based on TOPSIS method.The results using present method are compared with those from modern multi-objective problems.Results show that the hybrid approach has the great potential for handling multi-objective optimization problem.
作者 潘治 李学斌
出处 《中国造船》 EI CSCD 北大核心 2010年第2期99-106,共8页 Shipbuilding of China
关键词 船舶、舰船工程 多目标优化 随机权系数 多属性决策 信息熵 ship engineering multi-objective optimization stochastic weighted sum method multi-attribute decision making entropy weights
  • 相关文献

参考文献12

二级参考文献15

共引文献31

同被引文献50

  • 1顾敏童.船舶设计原理[M].上海:上海交通大学出版社,2003. 被引量:6
  • 2QU B Y, SUQANTHAN P N. Constrained multi-objective optimization algorithm with an ensemble of constraint han- ding methods [ J ]. Engineering Optimization, 2011,43 (4) : 403-416. 被引量:1
  • 3MOSTAGHIM S, TEICH J. Strategies for finding good local guides in multi-objective particle swarm optimization (MOP- SO) [ C]// Swarm Intelligence Symp 2003. Indianapolis, USA,2003 : 26-33. 被引量:1
  • 4HSIEH Minnan, CHIANG Tsungche, FU Lichen. A hybrid constraint handling mechanism with differential evolution for constrained multiobjeetive optimization [ C ]//2011 IEEE Congress of Evolutionary Computation. New Orleans, USA, 2011 : 1785-1792. 被引量:1
  • 5WANG Maoeai, DAI Guangming, HU Hanping, et al. Im- proved NSGA-II algorithm for optimization of constrainedfunctions[ C]// 2010 International Conference on Machine Vision and Human-Machine Interface. Kaifeng, China, 2010:673-675. 被引量:1
  • 6COELLO C A C, PULIDO G T , LECHUGA M S. Han- dling multiple objectives with particle swarm optimization [ J]. IEEE Trans on Evolutionary Computation, 2004,8 (3) : 256-279. 被引量:1
  • 7QU Boyang, PONNUTHURAI N S. Constrained multi-ob- jective optimization algorithm with diversity enhanced dif- ferential evolution [ C]//2010 IEEE World Congress on Computational Intelligence. Barcelona, Spain, 2010 : 1-5. 被引量:1
  • 8顾基发.运筹学,1993. 被引量:1
  • 9王洙然.MATLAB与科学计算. 被引量:1
  • 10陈宾康;董元胜.计算机辅助船舶设计. 被引量:1

引证文献5

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部