摘要
基于椭圆曲线上的双线性映射,提出一种(t,n)门限多重秘密共享方案。在该方案中,每个参与者持有的秘密份额由参与者自己选择,且维护一份秘密份额即可实现对多个秘密的共享。该方案无需存在固定的秘密分发者,也无需存在各参与者之间的秘密通道,通信在公共信道上进行,且分发一个共享秘密仅需公布3个公共值。在方案的实现过程中,能及时检测参与者之间的欺骗行为,验证秘密的正确性,具有较高的安全性和实用性。
This paper proposes a (t, n)-threshold multi-secret sharing scheme based on bilinear maps. In this scheme, each participant's secret shadow is selected by the participant himself and only one reusable secret shadow is required to be kept by each participant for sharing multiple secrets. There is no secure channel and static secret-publisher needed in this proposed scheme. The participants can communicate in a public channel, and only 3 public values are required for one secret sharing. It can checkout the cheat among participants and verify the correctness of secrets while the scheme is working. Therefore, it is high secure and efficient.
出处
《计算机工程》
CAS
CSCD
北大核心
2010年第12期159-161,共3页
Computer Engineering
基金
现代通信国家重点实验室基金资助项目(9140c1102060703)
关键词
双线性对
可验证
门限方案
多重秘密共享
bilinear maps
verified
threshold scheme
multi-secret sharing