期刊文献+

基于双线性对的多重秘密共享方案 被引量:3

Multi-secret Sharing Scheme Based on Bilinear Maps
下载PDF
导出
摘要 基于椭圆曲线上的双线性映射,提出一种(t,n)门限多重秘密共享方案。在该方案中,每个参与者持有的秘密份额由参与者自己选择,且维护一份秘密份额即可实现对多个秘密的共享。该方案无需存在固定的秘密分发者,也无需存在各参与者之间的秘密通道,通信在公共信道上进行,且分发一个共享秘密仅需公布3个公共值。在方案的实现过程中,能及时检测参与者之间的欺骗行为,验证秘密的正确性,具有较高的安全性和实用性。 This paper proposes a (t, n)-threshold multi-secret sharing scheme based on bilinear maps. In this scheme, each participant's secret shadow is selected by the participant himself and only one reusable secret shadow is required to be kept by each participant for sharing multiple secrets. There is no secure channel and static secret-publisher needed in this proposed scheme. The participants can communicate in a public channel, and only 3 public values are required for one secret sharing. It can checkout the cheat among participants and verify the correctness of secrets while the scheme is working. Therefore, it is high secure and efficient.
出处 《计算机工程》 CAS CSCD 北大核心 2010年第12期159-161,共3页 Computer Engineering
基金 现代通信国家重点实验室基金资助项目(9140c1102060703)
关键词 双线性对 可验证 门限方案 多重秘密共享 bilinear maps verified threshold scheme multi-secret sharing
  • 相关文献

参考文献6

  • 1Shamir A.How to Share a Secret[J].Communications of the ACM,1979,24(11):612-613. 被引量:1
  • 2Harn L.Efficient Sharing(Broadcasting)of Multiple Secrets[J].IEEE Proceedings on Computers and Digital Techniques,1995,142(3):237-240. 被引量:1
  • 3Hwang R J,Chang C C.An On-line Secret Sharing Scheme for Multi-secrets[J].Computer Communications,1998,21(13):1170-1176. 被引量:1
  • 4Chien H Y,Jan J K,Tseng Y M.A Practical(t,n)Multi-secret Sharing Scheme[J].IEICE Trans.on Fundamentals,2000,83(12):2762-2765. 被引量:1
  • 5Yang C C,Chang T Y,Hwang M S.A(t,n)Multi-secret Sharing Scheme[J].Applied Mathematics and Computation,2004,151(2):483-490. 被引量:1
  • 6李慧贤,庞辽军.基于双线性变换的可证明安全的秘密共享方案[J].通信学报,2008,29(10):45-50. 被引量:20

二级参考文献10

  • 1庞辽军,王育民.一个基于几何性质的(t,n)多重秘密共享方案[J].西安交通大学学报,2005,39(4):425-428. 被引量:12
  • 2庞辽军,王育民.基于RSA密码体制(t,n)门限秘密共享方案[J].通信学报,2005,26(6):70-73. 被引量:32
  • 3SHAMIR A. How to share a secret [J]. Communications of the ACM, 1979, 24(11):612-613. 被引量:1
  • 4BLAKLEY G Safeguarding cryptographic key[A]. Proc of AFIPS 1979 Nalional Computer Conference[C]. New York, USA, 1979.313-317. 被引量:1
  • 5ANIL K. JAI N. Biometric recognition[J]. Nature, 2007,449(6): 38-40. 被引量:1
  • 6JEFFERS J, ARAKALA A. Minutiae-based structures for a fuzzy vault[A]. Proc of the 2006 IEEE Biometrics Symposium[C]. MD, USA, 2006. 760-769. 被引量:1
  • 7ASMUTH C, BLOOM J. A modular approach to key safeguarding[J]. IEEE Transactions on Information Theory, 1983, 29: 208-210. 被引量:1
  • 8KARNIN E D, GREENE J W, HELLMAN M E. On sharing secret systems[J]. IEEE Transactions on Information Theory, 1983, 29: 35-41. 被引量:1
  • 9BONEH D, FRANKLIN M. Identity-based encryption from the Weil pairing[J]. SIAM, J Comput, 2003, 32(3): 586-615. 被引量:1
  • 10杨波.现代秘密学(第二版)[M].北京:清华大学出版社,2007. 被引量:1

共引文献19

同被引文献32

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部